{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用双模板法,向正硅酸甲酯的水解体系中同时引入聚乙二醇和三嵌段共聚物,成功制备出具有双连续、同时壁中分布着有序的复合结构硅胶独石材料. 产物的比表面积高达880 m2/g, 孔径为0.2~5 μm, 高度集中地分布在 5 nm. 结合物理吸附、扫描电镜、粉末X射线衍射和透射电镜等表征手段,发现合成条件如原料组成、反应温度和pH值等对反应体系中凝胶化转变和相分离发生的相对速度有重要影响,进而影响产物复合结构的生成. 此外,通过对合成条件的优化,一方面增强了无机骨架的强度,另一方面降低了湿凝胶干燥过程中的毛细管压力降,有效缓和了凝胶结构在干燥过程中的开裂和变形,使复合结构硅胶独石在厘米尺度内具有良好的整体性能.","authors":[{"authorName":"刘茜","id":"1d60a65d-9cd3-44d4-a242-308ce84cda94","originalAuthorName":"刘茜"},{"authorName":"李宏旭","id":"8e6d9fa5-1f6e-4e65-a835-04a9864991e5","originalAuthorName":"李宏旭"},{"authorName":"钱斌","id":"825dd257-aaec-45f9-8d66-7e7be551422d","originalAuthorName":"钱斌"},{"authorName":"高焕新","id":"e38ae3e2-7516-4270-ac5d-b849cf5a6b35","originalAuthorName":"高焕新"},{"authorName":"王仰东","id":"c85427eb-6298-470f-a589-83dc1c6376bb","originalAuthorName":"王仰东"},{"authorName":"唐颐","id":"54ca2722-5eb1-4928-8c97-155d27c7875d","originalAuthorName":"唐颐"},{"authorName":"谢在库","id":"8407d4b1-4636-4b4b-941c-aa72095c1cf9","originalAuthorName":"谢在库"}],"doi":"","fpage":"733","id":"1e4e77cb-498a-453c-8178-508987b588b4","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"2ebbe1fa-4537-4e51-a4c3-780f39191965","keyword":"/材料","originalKeyword":"介孔/大孔材料"},{"id":"e4e9d1ee-b450-4d80-ae2e-b6c388294949","keyword":"硅胶","originalKeyword":"硅胶"},{"id":"76e1d423-77fd-49e4-a107-b63121c52e64","keyword":"独石","originalKeyword":"独石"},{"id":"18bcd919-de7d-4b79-8a9a-2a43a8448dc8","keyword":"复合","originalKeyword":"复合孔"},{"id":"1a220398-67fa-4803-a574-d9ec9570b66e","keyword":"双模板法","originalKeyword":"双模板法"}],"language":"zh","publisherId":"cuihuaxb200808012","title":"双模板法制备/复合结构硅胶独石","volume":"29","year":"2008"},{"abstractinfo":"以聚苯乙烯微球以及F127嵌段共聚物自组装结构为模板, 酚醛树脂低聚物为碳前驱体, 双模板法合成了-分级结构的炭材料. 对样品进行了X射线衍射(XRD)、扫描电镜(SEM) 、透射电镜(TEM) 和氮吸附-脱附测试, 并研究了样品的电化学性能. 结果表明, 利用这种简便的合成方法可以得到具有三维连通以及二维有序结构的分级结构炭材料, 尺寸在 1μm左右 , 孔径集中分布在5nm, 比表面积为 353.8m2/g , 容0.36cm3/g. 利用三电极体系测试了产品作为电化学双电层电容器电极材料的性能, 在50mA/g的电流密度下, 放电质量比电容 为40F/g .","authors":[{"authorName":"周颖","id":"85d9ea1f-0553-4c50-b26c-b3f283cf39c2","originalAuthorName":"周颖"},{"authorName":"王志超","id":"6cc9600d-8521-4274-9a20-2e9b782f6cce","originalAuthorName":"王志超"},{"authorName":"王春雷","id":"b76a0e7a-10f5-4a51-a47e-a1611c4c85df","originalAuthorName":"王春雷"},{"authorName":"王六平","id":"a644a76a-71f3-405b-83e3-d4e4fd05d0b0","originalAuthorName":"王六平"},{"authorName":"许钦一","id":"cd218ec5-b14e-4b27-ad02-d125447ed8c6","originalAuthorName":"许钦一"},{"authorName":"邱山","id":"ed5a6800-bfe0-446f-9fd8-81757348e569","originalAuthorName":"邱介山"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00145","fpage":"145","id":"b1fb63a5-9995-4099-ab93-57e0ae1a5790","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"80f08e9e-2185-4b60-a8b6-6c29b3c2d714","keyword":"分级结构","originalKeyword":"分级孔结构"},{"id":"65b453e5-6ed2-4cb4-ae9b-d78956ef5580","keyword":"dual-templating method","originalKeyword":"dual-templating method"},{"id":"f888b275-8a41-4b52-b6e7-df18bc6d06f1","keyword":"EDLCs","originalKeyword":"EDLCs"}],"language":"zh","publisherId":"1000-324X_2011_2_8","title":" - 分级结构炭材料制备及性能 研究","volume":"26","year":"2011"},{"abstractinfo":"以聚苯乙烯微球以及F127嵌段共聚物自组装结构为模板,酚醛树脂低聚物为碳前驱体,双模板法合成了-分级结构的炭材料.对样品进行了X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和氮吸附-脱附测试,并研究了样品的电化学性能.结果表明,利用这种简便的合成方法可以得到具有三维连通以及二维有序结构的分级结构炭材料,尺寸在1μm左右,孔径集中分布在5nm,比表面积为353.8m2/g,容0.36cm3/g.利用三电极体系测试了产品作为电化学双电层电容器电极材料的性能,在50mA/g的电流密度下,放电质量比电容为40F/g.","authors":[{"authorName":"周颖","id":"00c0fddc-1742-46f7-b02b-35531161dc0b","originalAuthorName":"周颖"},{"authorName":"王志超","id":"85a0353d-3cdd-47f6-836d-5cfc4889d65b","originalAuthorName":"王志超"},{"authorName":"王春雷","id":"8fca0773-9585-4703-8471-dc777a8791ab","originalAuthorName":"王春雷"},{"authorName":"王六平","id":"fcd983ad-a628-4f92-84fd-ad19d8b2e1cd","originalAuthorName":"王六平"},{"authorName":"许钦一","id":"1befd096-61a8-4466-ad9f-f543d34db061","originalAuthorName":"许钦一"},{"authorName":"邱山","id":"6874010e-6acb-4eee-9c06-451d3668877b","originalAuthorName":"邱介山"}],"doi":"10.3724/SP.J.1077.2011.00145","fpage":"145","id":"8a44bdf1-92b9-4b25-a6a9-ae0aa367f460","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"8f817c99-93d0-4a2d-88ac-782d6b3d910c","keyword":"分级结构","originalKeyword":"分级孔结构"},{"id":"d8388324-e35d-4df8-97c5-71ab7e681671","keyword":"双模板","originalKeyword":"双模板"},{"id":"3d918c94-3ce1-4f75-99c9-5fe4a2e39fe2","keyword":"电化学双电层电容器","originalKeyword":"电化学双电层电容器"}],"language":"zh","publisherId":"wjclxb201102007","title":"-分级结构炭材料制备及性能研究","volume":"26","year":"2011"},{"abstractinfo":"在正己烷-三嵌段共聚物(EO_(20)-PO_(70)-EO_(20),P123)体系中合成了小孔径泡沫(MCF)氧化硅材料.采用高分辨扫描电镜、透射电镜、N_2吸附-脱附和小角XRD,对其孔道结构、型貌、比表面积、容等进行了表征.对合成条件的研究表明,在静置条件下水解TEOS合成的样品,其比表面积、孔径、容都比在搅拌下水解合成的样品明显增加,其中容可增加68%,达到2.32cm~3/g.","authors":[{"authorName":"张海东","id":"ed50a4e2-a66a-43c8-9aa4-7865e799f0ee","originalAuthorName":"张海东"}],"doi":"","fpage":"93","id":"b7bff25f-aad2-4dad-9407-3d436f0e7ea5","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2c98df0d-9069-484c-9c39-cfc9bfd837c2","keyword":"材料","originalKeyword":"介孔材料"},{"id":"531dd4e9-6c00-4576-b42d-f0452406992f","keyword":"泡沫","originalKeyword":"泡沫"},{"id":"dedee159-191a-4cd9-9311-fcb04c2d9735","keyword":"正己烷","originalKeyword":"正己烷"},{"id":"29e81f26-095c-4ea8-8fdc-72d04f6cb083","keyword":"氧化硅","originalKeyword":"氧化硅"}],"language":"zh","publisherId":"cldb200922027","title":"正己烷辅助合成小孔径泡沫氧化硅材料","volume":"23","year":"2009"},{"abstractinfo":"氧化铝材料自合成以来,因其在催化、吸附等领域的广泛应用受到了极大的关注.随着石油化工领域大分子反应不断增加,氧化铝的使用逐渐受到限制,合成具有分级结构-氧化铝材料将具有重大意义.分级结构-氧化铝因其同时具有孔道,不仅促进了客体分子在孔道内部的传送、减小扩散阻力,而且增大了孔道的比表面积,有助于改善吸附和分离效率、延长催化寿命,因此在吸附和催化方面具有广泛的应用前景.介绍了采用单模板法、双模板法和无模板法合成分级结构-氧化铝材料,并对材料在吸附和催化领域的应用进行探讨,最后对分级结构-氧化铝材料的发展趋势进行了展望.","authors":[{"authorName":"张瑞琪","id":"afb8701d-6c07-41a9-974a-a62d7d07537f","originalAuthorName":"张瑞琪"},{"authorName":"王晓钟","id":"8e57980d-94ef-4092-ad33-bfeb487f93a8","originalAuthorName":"王晓钟"},{"authorName":"崔莹莹","id":"5d6a7a0a-f18e-4238-a167-54e9d80575d4","originalAuthorName":"崔莹莹"},{"authorName":"连海霞","id":"be4fc03c-fd96-491a-a309-e4940bb22ad0","originalAuthorName":"连海霞"},{"authorName":"董家鑫","id":"ede20468-4c1c-45af-9aa8-219d1142b60d","originalAuthorName":"董家鑫"},{"authorName":"白亚东","id":"575c1069-0d3a-4480-a468-97e8ccec7364","originalAuthorName":"白亚东"},{"authorName":"王政","id":"5d052d9e-d8a8-454d-b183-5bb5f548e537","originalAuthorName":"王政"}],"doi":"10.7502/j.issn.1674-3962.2017.05.09","fpage":"384","id":"dc27225a-6944-4764-937a-694444acdafe","issue":"5","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"bee9660f-ea8c-4b09-a911-8e2f38569b40","keyword":"-材料","originalKeyword":"介孔-大孔材料"},{"id":"1896f784-5ae7-4394-8a1c-e85e5660aae9","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"42c5b79b-826a-4529-a33b-278b76e1f49f","keyword":"模板","originalKeyword":"模板"},{"id":"686d88a0-b41e-4065-8785-caa1db8526e1","keyword":"吸附","originalKeyword":"吸附"},{"id":"5fb5a180-4d73-4ca5-bdc4-94f7c4f511e3","keyword":"催化","originalKeyword":"催化"}],"language":"zh","publisherId":"zgcljz201705009","title":"分级结构-氧化铝的研究进展","volume":"36","year":"2017"},{"abstractinfo":"泡沫材料具有超大、开放式结构、孔径可调等特点,在催化剂载体、酶固定等领域具有明显的优势.手性材料除了具有常规材料的特点外还具有手性,因此在立体化学领域具有潜在的研究与应用价值.综述了泡沫材料以及手性材料的合成与应用.","authors":[{"authorName":"白光伟","id":"4a42d353-ffb9-4e3c-ae7b-8880d520dede","originalAuthorName":"白光伟"},{"authorName":"周国伟","id":"695140ab-7fb6-4e65-a6a5-6fc96cd92605","originalAuthorName":"周国伟"},{"authorName":"章晓彤","id":"363c8ad4-40c9-457f-be48-51c49de43410","originalAuthorName":"章晓彤"},{"authorName":"李长军","id":"e9b43e7c-6894-42e1-8608-df130c565666","originalAuthorName":"李长军"},{"authorName":"邢凡勤","id":"684d8f7e-c9ca-4f6f-9e64-54e944fb2079","originalAuthorName":"邢凡勤"}],"doi":"","fpage":"55","id":"6548c29a-1fc5-40ef-9ddd-2a4ddb1cea04","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0c12c58e-4caa-49fe-b8e0-2e49cafb1e6f","keyword":"泡沫","originalKeyword":"介孔泡沫"},{"id":"5e2be47f-94ac-429f-934c-ad4537354ace","keyword":"手性材料","originalKeyword":"手性介孔材料"},{"id":"56c1071b-209d-4340-ab6e-64f184fde782","keyword":"酶固定","originalKeyword":"酶固定"}],"language":"zh","publisherId":"cldb200911012","title":"泡沫及手性材料的制备与应用","volume":"23","year":"2009"},{"abstractinfo":"材料孔径调节可通过改变表面活性剂及添加辅助剂来实现,其作用机理是在材料形成过程中改变胶束的大小;改变组成配比和温度等反应条件也能实现调,这可能涉及合成机理的变化.相比而言,前2种方法运用得较多,也更有效.","authors":[{"authorName":"曹渊","id":"128559ed-d51e-4ed4-998b-aa6eddc73850","originalAuthorName":"曹渊"},{"authorName":"魏红娟","id":"af5096fa-d1d7-45a6-822e-187abc4af2bb","originalAuthorName":"魏红娟"},{"authorName":"王晓","id":"e623ca81-71c0-4e7c-a16c-784476b765a9","originalAuthorName":"王晓"}],"doi":"","fpage":"27","id":"91f2aada-ff9b-44e0-9ea3-cfb852ef7d68","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7d5d1d9b-a879-491f-b5d2-94c604b61ceb","keyword":"材料","originalKeyword":"介孔材料"},{"id":"50683efa-b165-4b58-b25e-f0d1a61998d5","keyword":"孔径","originalKeyword":"孔径"},{"id":"385b84c2-0ee8-4b2f-b1fd-d2e7b741bff2","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"29beb0c6-714c-4c1a-8eb3-96b63a066354","keyword":"辅助剂","originalKeyword":"辅助剂"}],"language":"zh","publisherId":"cldb201011006","title":"材料的调方法及机理","volume":"24","year":"2010"},{"abstractinfo":"自从1992年首次报道氧化硅分子筛M41S系列以来,人们采用各种商业化表面活性剂为模板,合成了多种骨架组成、丰富的有序观结构、不同孔径尺寸的材料,并将其应用在能源、环境、催化等诸多领域.然而,由于常规商业化模板剂的分子量大小有限,合成的材料具有较小的孔径(<8.0 nm),从而极大地限制了其面对尺寸客体分子的相关应用.此外,利用常规模板剂难以合成出具有晶化墙壁的金属氧化物材料.近年来,大分子量两亲性嵌段共聚物相继被报道用来合成新型材料,本文将综述基于这种嵌段共聚物为模板剂合成各种具有孔径和晶化墙壁材料的研究进展.","authors":[{"authorName":"罗维","id":"bdc5c3f3-8263-4a05-bd23-36ae2eae5bb3","originalAuthorName":"罗维"},{"authorName":"魏晶","id":"94023c62-e990-4b4e-b30e-cfad4a10fe29","originalAuthorName":"魏晶"},{"authorName":"邓勇辉","id":"3a777802-0fd7-436c-8f3f-6df49c0f99a8","originalAuthorName":"邓勇辉"},{"authorName":"李宇慧","id":"46302ab0-1d1e-49e7-a02e-edb7d1afd985","originalAuthorName":"李宇慧"},{"authorName":"王连军","id":"7f93853d-58f4-46c9-979a-26ca58f8257e","originalAuthorName":"王连军"},{"authorName":"赵涛","id":"a5cd74bc-8486-4e59-8951-1187b152b732","originalAuthorName":"赵涛"},{"authorName":"江莞","id":"dc4aa287-abb8-4edd-a7cd-e3f000bdcae9","originalAuthorName":"江莞"}],"doi":"10.15541/jim20160297","fpage":"1","id":"a085ed7e-272e-4a49-82fd-795420ab5a51","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"cc91947c-a66d-4eb4-b70d-043bb86ec10b","keyword":"材料","originalKeyword":"介孔材料"},{"id":"be83891a-81cb-4510-8d31-19fcaa70441e","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"41295c0d-008f-4830-8ce4-3e4e2698dbd5","keyword":"软模板","originalKeyword":"软模板"},{"id":"6732aa88-19fd-4b69-b8d6-e11d2bbbda3b","keyword":"自组装","originalKeyword":"自组装"},{"id":"5693cca0-52a2-41f7-ae3e-1a567f270391","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"wjclxb201701001","title":"新型两亲性嵌段共聚物导向合成有序孔径材料的研究进展","volume":"32","year":"2017"},{"abstractinfo":"综述了近年来分子筛催化材料制备的研究成果及其在催化领域特别是精细化学品合成中的应用. 文章分为两部分,分别讨论了材料本身作为催化剂以及主客体催化材料的应用. ","authors":[{"authorName":"李亮","id":"a0537bfd-c13e-45c0-bbd4-6dec35059150","originalAuthorName":"李亮"},{"authorName":"施剑林","id":"81ef9895-a281-484a-aefb-39ac408c0c5b","originalAuthorName":"施剑林"}],"doi":"","fpage":"159","id":"8fa96ba1-b556-4636-b65b-5a005234ed15","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0f0c28e6-ac7e-4d4b-be4c-5824c959fa7b","keyword":"分子筛","originalKeyword":"介孔分子筛"},{"id":"8b3a91fd-1b08-4752-8960-f7f8da083b1a","keyword":"主客体材料","originalKeyword":"介孔主客体材料"},{"id":"24f131ee-d503-4f20-a5ee-c1d3997f2dea","keyword":"催化","originalKeyword":"催化"},{"id":"bc588473-1fd8-40ef-be15-2e92ac37cf28","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cuihuaxb200502015","title":"主客体材料在催化领域的应用","volume":"26","year":"2005"},{"abstractinfo":"以嵌段共聚物为模板剂,甲酰胺为氮源,结合溶胶凝胶法制备了具有可见光活性的-氮掺杂二氧化钛(N-TiO2)材料.通过X射线衍射、低温N2吸附-脱附、扫描电镜、紫外-可见吸收光谱等手段,考察了嵌段共聚物对样品微结构和可见光活性的影响.结果表明,样品主要以锐钛矿相和板钛矿相混合形式存在;改变嵌段共聚物的浓度,可以制得晶粒粒径9~12 nm,孔径10~14 nm,禁带宽度2.98~2.76 eV的-N-TiO2,且随着模板剂加入量的增加,孔径增大,壁增厚.对甲基橙溶液的室内自然光降解实验表明,-N-TiO2具有良好的光催化活性,随着嵌段共聚物加入量的增加,样品对甲基橙的降解时间缩短,降解率提高.","authors":[{"authorName":"景文珩","id":"0e99a4e6-9814-4898-ae00-93cb2101467f","originalAuthorName":"景文珩"},{"authorName":"王韦岗","id":"6ce3d92b-0732-4ac1-af28-503916014407","originalAuthorName":"王韦岗"},{"authorName":"邢卫红","id":"af912372-9764-421c-9b74-1b87c757df03","originalAuthorName":"邢卫红"}],"doi":"","fpage":"426","id":"67293066-9684-4e48-9104-6b5c60859ad4","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"923628b3-bc87-4e37-9419-3109ccfab4bb","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"f0cfdfbb-3b1a-4921-b019-d91ab5876ae1","keyword":"甲酰胺","originalKeyword":"甲酰胺"},{"id":"7352b7b5-469c-4f9a-a2c6-46bcd8148185","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"a1f38f04-def6-4572-b472-1b8fbc183f65","keyword":"氮掺杂","originalKeyword":"氮掺杂"},{"id":"7acb9160-03bf-4cc3-832c-b17a06fabea7","keyword":"-","originalKeyword":"大孔-介孔"},{"id":"e7cbf5f6-befb-450c-9a30-e10533a4c36d","keyword":"甲基橙","originalKeyword":"甲基橙"},{"id":"efe44af9-03f3-40b5-8918-dab952608c30","keyword":"光催化降解","originalKeyword":"光催化降解"}],"language":"zh","publisherId":"cuihuaxb200905011","title":"-氮掺杂二氧化钛的制备及其光催化性能测试","volume":"30","year":"2009"}],"totalpage":6550,"totalrecord":65492}