{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于氨水工质对的吸收式制冷和热泵技术中,氨和水分离时需要精馏而产生大量能耗.针对这一缺陷,本文提出改良措施:将离子液体[P4444]Cl作为添加剂加入氨水中,组成分离能耗较低的新工质体系.利用等温合成法,本工作测定了[P4444] Cl水溶液浓度为33.33%(质量分数)的NH3-H2O-[P4444]Cl体系在温度范围0~60℃、压力范围0~650kPa时的气液相平衡数据,并采用多项式方程对实验数据进行拟合得到模型参数.最后,本工作还讨论了该工质体系的其他热物性作为进一步开发的参考.","authors":[{"authorName":"黄维佳","id":"51c26a74-8253-429f-bb3f-7d2954e8da71","originalAuthorName":"黄维佳"},{"authorName":"郑丹星","id":"044f7d86-65be-477d-9026-14b544a06afd","originalAuthorName":"郑丹星"}],"doi":"","fpage":"1413","id":"f964b46f-a331-4d18-84f6-2cd3d8a7bef6","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"03e35920-cc88-41b5-919c-8eb9e5f5d0c8","keyword":"氨水工质对","originalKeyword":"氨水工质对"},{"id":"bb53c239-ff9c-4ed9-bd6c-d1933f17de8e","keyword":"气液相平衡","originalKeyword":"气液相平衡"},{"id":"3212d08d-8b61-44ae-afa5-2b365ae13b6b","keyword":"[P4444]Cl","originalKeyword":"[P4444]Cl"},{"id":"aab11fd8-2084-4993-bbc6-a315e9523ef6","keyword":"等温合成法","originalKeyword":"等温合成法"}],"language":"zh","publisherId":"gcrwlxb201507006","title":"NH3-H2O-[P4444] Cl体系气液相平衡测定","volume":"36","year":"2015"},{"abstractinfo":"从固-固反应、固-气(液)、气-气反应的角度,概述了原位反应合成法在先进陶瓷领域的应用;阐述了原位反应法的特点,存在的问题及发展方向.","authors":[{"authorName":"梁波","id":"9596ce31-ecb3-4b81-b1a8-ea58961c92fc","originalAuthorName":"梁波"},{"authorName":"靳喜海","id":"80f3b1dd-695e-420e-a840-bef1b5eacfa7","originalAuthorName":"靳喜海"},{"authorName":"陈玉如","id":"95291409-f2ba-4da6-9198-a54a2e47c8b3","originalAuthorName":"陈玉如"}],"doi":"10.3969/j.issn.1005-0299.2000.01.020","fpage":"84","id":"99a2bddc-6af7-42b4-9f9c-484796cc3135","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"002a0df2-b1b7-4f0b-81e5-579420a4e339","keyword":"原位反应合成法","originalKeyword":"原位反应合成法"},{"id":"9ea1c108-2ae2-4a94-9971-d499ef8b858f","keyword":"先进陶瓷","originalKeyword":"先进陶瓷"}],"language":"zh","publisherId":"clkxygy200001020","title":"反应合成法制备先进陶瓷","volume":"8","year":"2000"},{"abstractinfo":"研究了以硝酸锂、硝酸铝和尿素为原料,用溶胶-凝胶燃烧合成法制备γ-LiAlO2粉体的工艺.采用热重分析(TG-DTA)、X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)对反应前驱体、反应过程、燃烧产物进行了表征测试.分析了原料配比、溶胶前驱体pH值对反应产物特性的影响,并初步探讨了反应的历程.","authors":[{"authorName":"杨细平","id":"b1c8706c-15c1-4e6d-8b1e-c294efa8b658","originalAuthorName":"杨细平"},{"authorName":"邱祖民","id":"42877381-ecd7-44b2-987f-2215d72d8c60","originalAuthorName":"邱祖民"},{"authorName":"刘艳凤","id":"c35adb1d-1e7f-446d-b849-3817fc0e1a9d","originalAuthorName":"刘艳凤"},{"authorName":"邱俊明","id":"68163d87-1c4c-4313-b7dd-b8cf0bcb73b0","originalAuthorName":"邱俊明"}],"doi":"","fpage":"213","id":"c973d1fc-345d-4f36-92ca-1eb785490c2e","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8c192656-264a-4e13-a3c2-09177a4f6c3b","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"972193a6-3cd0-4aa9-a984-178cc0e90420","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"342ca052-6da6-4591-af09-57a7dac9eb03","keyword":"γ-LiAlO2","originalKeyword":"γ-LiAlO2"},{"id":"6836b42c-442d-4af2-b938-9466850cc023","keyword":"配比","originalKeyword":"配比"},{"id":"e18562fb-d833-4734-8dbb-4639a4448110","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"cldb2008z3069","title":"溶胶-凝胶燃烧合成法制备γ-LiAlO2","volume":"22","year":"2008"},{"abstractinfo":"简要介绍了纳米金属氧化物的一些应用;综述了近年来纳米金属氧化物的制备方法——溶液燃烧合成法;其中着重评述了近年来改进的溶液燃烧制备方法:自蔓延溶胶-凝胶燃烧合成法、浸渍在惰性支撑物中的燃烧合成法、浸渍在活性支撑物中的燃烧合成法、盐助溶液燃烧合成法、微波助溶液燃烧合成法、乳液燃烧合成法和纤维素辅助溶液燃烧合成法;并展望了该领域今后的研究方向.","authors":[{"authorName":"欧玉静","id":"704880c5-bcad-424e-a491-9c30a280e423","originalAuthorName":"欧玉静"},{"authorName":"喇培清","id":"6101ac0f-a576-4845-b49e-022e5d065cdc","originalAuthorName":"喇培清"},{"authorName":"魏玉鹏","id":"206a7eb5-28b7-4bd6-baa2-f82c3dab3c4e","originalAuthorName":"魏玉鹏"},{"authorName":"朱丹丹","id":"636d7451-cefe-45d1-bd97-768a15217976","originalAuthorName":"朱丹丹"}],"doi":"","fpage":"36","id":"3955a602-b78d-4a2f-b050-d06184ffbdf9","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5c56f786-7537-454a-b27d-cbd9983dbb39","keyword":"溶液燃烧合成法","originalKeyword":"溶液燃烧合成法"},{"id":"860097d1-db95-40a5-802f-11c88371277d","keyword":"纳米金属氧化物","originalKeyword":"纳米金属氧化物"},{"id":"b8a496d0-8e4e-460e-bf9f-5e8660fc32ff","keyword":"自蔓延溶胶-凝胶燃烧合成法","originalKeyword":"自蔓延溶胶-凝胶燃烧合成法"},{"id":"3dbde840-7f36-421a-8103-3ae0acf4f519","keyword":"盐助溶液燃烧合成法","originalKeyword":"盐助溶液燃烧合成法"}],"language":"zh","publisherId":"cldb201221008","title":"溶液燃烧合成法制备纳米金属氧化物的研究进展","volume":"26","year":"2012"},{"abstractinfo":"以六水硝酸镧、一水柠檬酸为原料,利用低温燃烧合成法制备了纳米La2O3粉体.利用XRD、TG-DTA和TEM等测试方法对干凝胶热分解过程及最终形成的纳米La2O3粉体进行了表征,并研究了前驱体溶液的pH值、物质的量配比、煅烧温度、煅烧时间对粉体粒径和形貌的影响.实验结果表明,在溶液的pH=2,La(NO3)3·6H2O:C6H8O7·H2O=6:7,煅烧温度在700~900 ℃,煅烧时间为1.5 h时,可获得粒径均匀的纳米La2O3粉体,且所得产物的粒径范围为50~100 nm.","authors":[{"authorName":"张海瑞","id":"8b1eaa2d-6b5a-4330-aa93-8faf076ea98f","originalAuthorName":"张海瑞"},{"authorName":"储刚","id":"713456ad-4dd6-4751-ac86-022810e0990c","originalAuthorName":"储刚"},{"authorName":"周莉","id":"1a1589ad-0180-49b7-a37f-7bc2511c5392","originalAuthorName":"周莉"},{"authorName":"周鑫","id":"09670b21-5f4a-453e-937c-bddb7b73e0b6","originalAuthorName":"周鑫"},{"authorName":"曾丽瑛","id":"102777bc-d2f7-42e1-bf0c-a1a9119e6d32","originalAuthorName":"曾丽瑛"}],"doi":"","fpage":"1286","id":"1565db1d-56cc-45e8-ba0d-1e41f0b161aa","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"8d039e96-bccf-469c-93ea-330631d568d6","keyword":"低温燃烧合成","originalKeyword":"低温燃烧合成"},{"id":"cbcad8ad-5115-4580-877a-7c86c67f3b23","keyword":"纳米氧化镧","originalKeyword":"纳米氧化镧"},{"id":"43f2ea77-b9de-4e74-97f1-47676d79af66","keyword":"粒径","originalKeyword":"粒径"}],"language":"zh","publisherId":"rgjtxb98201005039","title":"低温燃烧合成法制备纳米氧化镧","volume":"39","year":"2010"},{"abstractinfo":"阐述了自蔓延高温合成法(SHS)制备的功能梯度材料的种类、特性及其应用前景,探讨了自蔓延高温反应合成金属陶瓷功能梯度材料的影响因素(合成原料、点火工艺、反应环境和辅助措施),并分三个阶段(准备阶段、合成阶段和后处理阶段)讨论了SHS法制备功能梯度材料应注意的技术问题,同时介绍了自蔓延法辅助其他工艺(SHS反应喷涂)制备梯度陶瓷材料技术,并提出了自蔓延高温合成法制备金属陶瓷功能梯度材料今后的发展方向.","authors":[{"authorName":"谭俊","id":"478931f6-c648-4f79-a260-bd6371b37f1a","originalAuthorName":"谭俊"},{"authorName":"张勇","id":"de77a2fd-0f42-4249-bd3a-0f335af3a06e","originalAuthorName":"张勇"},{"authorName":"吴迪","id":"2831ce8c-a2c9-48f2-8120-0a8e541341a0","originalAuthorName":"吴迪"},{"authorName":"赵军军","id":"db0c8de6-e60d-4408-ba5e-fab81c7c53f6","originalAuthorName":"赵军军"}],"doi":"","fpage":"79","id":"fbad0f0b-470a-483b-aa5a-63b1b4d27ce9","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c2d8b35b-3c09-44ac-83a8-e592efce35d6","keyword":"金属陶瓷","originalKeyword":"金属陶瓷"},{"id":"d7d22881-76a6-4054-94ed-b8da9344c435","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"0d57cb92-b856-450d-82cf-c3acf2c9e4f7","keyword":"自蔓延高温合成","originalKeyword":"自蔓延高温合成"}],"language":"zh","publisherId":"cldb201317016","title":"自蔓延高温合成法合成金属陶瓷功能梯度材料研究进展","volume":"27","year":"2013"},{"abstractinfo":"综述了凝胶-燃烧合成法制备纳米氧化物的原理和特点,重点分析了该工艺的主要影响因素,并展望了该工艺的发展趋势.","authors":[{"authorName":"许前丰","id":"606cae19-5669-44b5-9cb9-c597fe4143bf","originalAuthorName":"许前丰"},{"authorName":"严有为","id":"f442ff96-bc0d-45d6-9a99-b8d1ec585ad3","originalAuthorName":"严有为"}],"doi":"","fpage":"119","id":"3e279fb5-8c27-44b4-903a-70e117a00e5a","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f1cfff77-b067-4c88-876b-4d47a4eb1ec8","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"f0d3bae9-82e2-4658-bdff-f47526fac32b","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"b7956906-55b3-4ee5-bec2-ca4cf0bd8d81","keyword":"纳米氧化物颗粒","originalKeyword":"纳米氧化物颗粒"},{"id":"6b55c282-440f-42b6-a089-b8ecb0f167c4","keyword":"粉体","originalKeyword":"粉体"}],"language":"zh","publisherId":"cldb2005z1039","title":"凝胶-燃烧合成法制备纳米氧化物颗粒的研究进展","volume":"19","year":"2005"},{"abstractinfo":"评述了电沉积-水热合成法制备羟基磷灰石生物陶瓷涂层的相形成机理、工艺进展和工艺特点,并对有关问题进行了探讨.","authors":[{"authorName":"刘芳","id":"b6675c3a-83d9-4317-beb5-8c771edeee8d","originalAuthorName":"刘芳"},{"authorName":"周科朝","id":"0202a81f-b5de-48a6-9e1e-7cdc1a5dd37c","originalAuthorName":"周科朝"},{"authorName":"黄伯云","id":"7d0adecc-db5d-405c-9d2c-4c5f03864fc6","originalAuthorName":"黄伯云"},{"authorName":"刘咏","id":"7663e150-9eda-41ce-9e66-6b6cf4e383dd","originalAuthorName":"刘咏"},{"authorName":"李志友","id":"044bb070-5e1d-4815-9807-4d62c2654863","originalAuthorName":"李志友"}],"doi":"","fpage":"38","id":"cf255c64-7484-4e9a-94b1-b26a77408ebf","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"63b0820f-f1d9-4e25-a1f6-c2bfd72c0288","keyword":"电沉积-水热合成","originalKeyword":"电沉积-水热合成"},{"id":"c198a834-4b51-4f31-a0e0-5b2faa44988a","keyword":"生物陶瓷","originalKeyword":"生物陶瓷"},{"id":"8fde2d07-a768-4c16-9884-dc849bb0c0d9","keyword":"涂层","originalKeyword":"涂层"},{"id":"242437d7-0566-45aa-b5af-886507418a30","keyword":"梯度材料","originalKeyword":"梯度材料"}],"language":"zh","publisherId":"cldb200203012","title":"电沉积-水热合成法制备羟基磷灰石生物陶瓷涂层","volume":"16","year":"2002"},{"abstractinfo":"采用直接合成法使铑粉和碘粉反应合成碘化铑.首先对碘的气化过程进行热力学计算,确定铑粉和碘粉反应的最高温度为600℃;通过吉布斯(Gibbs)自由能与温度的计算,得出该反应的适宜温度为500℃.在500℃温度下碘和铑能充分反应生成活性碘化铑.","authors":[{"authorName":"权变利","id":"defb6c20-94b0-4701-8ebc-d77d47f51c13","originalAuthorName":"权变利"}],"doi":"10.3969/j.issn.1004-0676.2012.02.009","fpage":"44","id":"179abcd3-994d-47cd-94f8-387028003dd9","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"8e10d1a4-ace3-4191-bdc2-91ceb8854c5b","keyword":"物理化学","originalKeyword":"物理化学"},{"id":"2e21a749-f894-4751-9d10-407ae7351293","keyword":"碘化铑","originalKeyword":"碘化铑"},{"id":"1feae165-7228-4c8a-8274-cd71b9ddef39","keyword":"合成","originalKeyword":"合成"},{"id":"9bd6fdfe-7acf-42b0-b719-7c62aafae12b","keyword":"热力学","originalKeyword":"热力学"}],"language":"zh","publisherId":"gjs201202009","title":"直接合成法合成碘化铑的热力学研究","volume":"33","year":"2012"},{"abstractinfo":"涂在IP板(Imaging Plate,简称IP)上的荧光粉BaFBr:Eu2+可存储X线影像,并通过光激励发光读出存储的光信息.BaFBr:Eu2+传统的制备方法是高温固相法,而燃烧合成法一直应用在合成金属氧化物和难熔金属之间的合成上,用这种方法制备不含氧的化合物还未见报道.本文报道了如何利用燃烧合成法制备IP板荧光粉一种不含氧的化合物,着重讨论了燃烧合成法的工艺对材料的结构和性能的影响.","authors":[{"authorName":"马宇平","id":"d8ec49a3-82b1-4431-931f-11effa9c3e2d","originalAuthorName":"马宇平"},{"authorName":"熊光楠","id":"d0df6640-c92c-4a77-94fa-1fa641c35451","originalAuthorName":"熊光楠"},{"authorName":"娄素云","id":"ed83787b-3c57-4ef7-a090-2f3904a710ca","originalAuthorName":"娄素云"},{"authorName":"郑震","id":"0648039b-c12f-481c-bb6e-c5dd31d666f9","originalAuthorName":"郑震"},{"authorName":"张丽平","id":"cac3e74f-bc56-455b-a1ef-a013fb83d689","originalAuthorName":"张丽平"}],"doi":"","fpage":"438","id":"93dde230-fd58-4274-a566-cf8a53a23909","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2967b9bd-15e2-47b7-bdfc-a91cfb33e8d1","keyword":"BaFBr:Eu2+","originalKeyword":"BaFBr:Eu2+"},{"id":"edae767c-2848-4889-8691-33f396c6f22a","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"80d70f98-1187-4d92-bf30-c6710cb8df1c","keyword":"氧化还原放热反应","originalKeyword":"氧化还原放热反应"},{"id":"6eaa4146-acdc-4656-9278-4a703101f5af","keyword":"高温固相法","originalKeyword":"高温固相法"}],"language":"zh","publisherId":"gncl2004z1112","title":"燃烧合成法制备IP板荧光粉工艺参数的研究","volume":"35","year":"2004"}],"totalpage":2475,"totalrecord":24744}