{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了获得板材在大变形范围内的硬化性能,采用硬度试验与单向拉伸试验相结合的方法对材料的硬化行为进行了研究.以碳钢板为研究对象,通过测量断裂后试件不同部位的微氏硬度获得变形量与硬度之间的关系,并结合硬度与屈服应力的关系,获得了常规拉伸试验方法无法获得的大变形阶段的硬化行为.结果表明,通过该方法获得的硬化曲线变形范围广,结果可靠,能够满足塑性大变形的需要.","authors":[{"authorName":"田浩彬","id":"bf3c9810-e361-4773-8688-5234317a9da0","originalAuthorName":"田浩彬"},{"authorName":"刘晓航","id":"c263f22d-62f0-47b3-9a41-880cfff6e19a","originalAuthorName":"刘晓航"},{"authorName":"苑文婧","id":"10ec4977-37bb-414a-a9d6-08701b2d1854","originalAuthorName":"苑文婧"},{"authorName":"康达昌","id":"0aa757f0-787f-417f-9a6f-e79f36b38e29","originalAuthorName":"康达昌"}],"doi":"","fpage":"45","id":"a2fb377b-497e-4b2d-823d-4a695f4c852f","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e27f94ad-fbc0-4c5d-bda7-2fca02a75046","keyword":"硬化曲线","originalKeyword":"硬化曲线"},{"id":"48cd6cfe-bff7-44b3-945e-91f3ef6243e3","keyword":"微氏硬度","originalKeyword":"微氏硬度"},{"id":"ca327dcf-cbc8-4133-84d4-c9e6d0109e43","keyword":"单向拉伸试验","originalKeyword":"单向拉伸试验"},{"id":"7cbb807a-7840-4432-b9b2-e13ec31e4a16","keyword":"屈服强度","originalKeyword":"屈服强度"},{"id":"a795c95a-b4a0-4da7-b15f-9948d2278793","keyword":"大塑性变形","originalKeyword":"大塑性变形"}],"language":"zh","publisherId":"clkxygy201204008","title":"通过硬度确定板材大变形硬化曲线的方法研究","volume":"20","year":"2012"},{"abstractinfo":"研究了耐候钢05CuPCrNi冷轧板的硬化曲线,变形抗力模型,退火后力学性能并给出了理论再结晶温度初步测试结果.结果表明1.6 mm与2.0 mm厚冷轧板在600 ℃退火0.5 h后其力学性能满足该钢种的技术标准要求,1.6 mm厚冷轧板理论再结晶开始温度为510~520 ℃,2.0 mm厚冷轧板为520~530 ℃.","authors":[{"authorName":"赵德文","id":"dcb59619-55fb-422f-98bb-a80cf624fa2e","originalAuthorName":"赵德文"},{"authorName":"董学新","id":"b4cd1af4-7eb9-47f6-9a9c-41e7494d756b","originalAuthorName":"董学新"},{"authorName":"杜林秀","id":"f2871bc7-22bb-4417-8414-e6235e886704","originalAuthorName":"杜林秀"},{"authorName":"刘相华","id":"5f729dbe-e833-4ee3-95eb-da199e8c311c","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"fe9a79c8-a1b3-4c90-a516-814fbaffd415","originalAuthorName":"王国栋"},{"authorName":"翁宇","id":"be92635b-301e-406b-afd2-be576cbf7412","originalAuthorName":"翁宇"},{"authorName":"贾志鑫","id":"72165898-6688-4bdb-b1c4-8a4f1b294e02","originalAuthorName":"贾志鑫"}],"doi":"","fpage":"39","id":"4b8f1472-7552-4b29-8384-859fa79ff124","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b343b364-07e4-47cf-98d2-a65dd8e876d0","keyword":"耐候钢","originalKeyword":"耐候钢"},{"id":"957fd60f-c3c9-416a-a7c3-224c1e79763d","keyword":"硬化曲线","originalKeyword":"硬化曲线"},{"id":"8d8ced11-828c-4bb9-8035-012894180973","keyword":"变形抗力模型","originalKeyword":"变形抗力模型"},{"id":"bda044ad-ed15-4046-94de-fba935ebd356","keyword":"再结晶","originalKeyword":"再结晶"}],"language":"zh","publisherId":"gt200202012","title":"耐候钢05CuPCrNi冷加工性能研究","volume":"37","year":"2002"},{"abstractinfo":"对2A97铝锂合金进行自然时效(0~90 d)、不同温度的单级人工时效(145,165,185℃)和自然时效(T4)+185℃人工时效的双级时效处理,研究了时效工艺对合金硬化曲线、组织和力学性能的影响,并分析了拉伸断口形貌.结果表明:试验合金经自然时效(T4)处理后的主要强化相为δ'、GP区和δ'/β'复合粒子,此时合金的强度较低、塑性较高,拉伸断口上分布着较多韧窝;经不同温度单级人工时效处理后,合金抗拉强度显著提高的同时塑性明显下降,断口形貌呈冰糖状,其中185℃×10 h单级时效处理后的强塑性均较好,其抗拉强度、屈服强度和伸长率分别为537,506 MPa和7.0%;与185℃单级时效的相比,T4(60 d)+185℃双级时效后,合金的硬度出现了先下降后上升的现象,并且达到峰值的时间推迟了20 h,但强度和塑性均有所提高,断口为沿晶、穿晶约各占一半的混合型断裂,塑性有所改善.","authors":[{"authorName":"高文理","id":"82bba1e9-c8d2-444d-bdfa-01ba1a87c1b1","originalAuthorName":"高文理"},{"authorName":"闫豪","id":"7915b23e-8abc-4dee-8df3-d1a38657bb0d","originalAuthorName":"闫豪"},{"authorName":"冯朝辉","id":"47bf2673-7257-4534-beb5-0e2038c754a9","originalAuthorName":"冯朝辉"},{"authorName":"陆政","id":"906c9835-651d-4969-8cdb-d588cd8ee724","originalAuthorName":"陆政"}],"doi":"","fpage":"21","id":"b3d62927-940f-411f-9bd7-fa96068b7eed","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"5862eb41-0a5e-4574-8f6d-1ffc8868b159","keyword":"2A97铝锂合金","originalKeyword":"2A97铝锂合金"},{"id":"3c60d11a-4873-4d54-96e9-d001974f8b79","keyword":"时效","originalKeyword":"时效"},{"id":"ebe91f5e-ada8-49d5-ae90-960592b18184","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"867740f9-aeb7-4115-8d09-a6ceca4f11ea","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"70732e99-4a3c-4088-b128-43b4b9eda4b9","keyword":"硬化曲线","originalKeyword":"硬化曲线"}],"language":"zh","publisherId":"jxgccl201405005","title":"不同工艺时效后2A97铝锂合金的组织与性能","volume":"38","year":"2014"},{"abstractinfo":"本文采用自行设计和改进的滚动刀口径向引伸仪,精确地测定了若干典型金属材料的真应力(σ)-真应变(ε)曲线。根据最大均匀应变ε_B对应于σ-ε曲线和dσ/1dε-ε曲线交点的理论关系,探讨了基体和第二相对这两条曲线,亦即对ε_B值的影响。根据在双对数坐标上硬化曲线出现阶段性的事实,分析了硬化指数n_1,n_2对基体和第二相敏感的问题。研究表明,dσ/dε-ε曲线主要取决于基体状态,而口σ-ε曲线则受第二相影响较大。n_1对基体较敏感;n_z则对第二相较敏感。n_s的出现是一个值得重视的问题。文中最后讨论了n和ε_B的关系,指出一定条件下只存在n_z=ε_B的近似关系。","authors":[{"authorName":"黄明志","id":"8620290e-db25-4acc-a333-fccb595fc210","originalAuthorName":"黄明志"},{"authorName":"骆竞晞","id":"adc0449a-27cd-4bcb-815f-2532aa5a1772","originalAuthorName":"骆竞晞"},{"authorName":"贺保平","id":"f67d69df-8590-49d4-8733-94ed1de1a0d7","originalAuthorName":"贺保平"}],"categoryName":"|","doi":"","fpage":"39","id":"a081ff09-9215-446f-b0f9-d928d1506359","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_4_12","title":"金属硬化曲线的阶段性和最大均匀应变","volume":"19","year":"1983"},{"abstractinfo":"通过硬度测量和TEM分析的方法研究了电场对2E12铝合金时效硬化曲线和微观组织的影响.采用硬度测试作出2E12铝合金的时效硬化曲线,并用透射电镜检测其微观组织.时效硬化曲线分析显示:电场可使到达时效峰值的时间提前,但是电场也会使时效的硬度峰值降低.透射电镜测试显示:电场时效后T相变小,并且S'相更加细小.电场降低了时效激活能使到达时效峰值硬度的时间减少.正电场降低了S'相的形核功,促进S'相的形核,并且S'相更加细小,说明电场一方面能够促进S'相的形核,另一方面也能抑制其长大和粗化.","authors":[{"authorName":"李智燕","id":"31397462-5fef-48b9-8edc-72f6792e873d","originalAuthorName":"李智燕"},{"authorName":"易丹青","id":"74f221bd-ffd6-4df9-9867-a59628d4468f","originalAuthorName":"易丹青"},{"authorName":"李荐","id":"bc343261-aedc-48a9-b62f-abe47e73d4e2","originalAuthorName":"李荐"},{"authorName":"吴春莺","id":"f672d5d1-76b6-4820-b117-53ba0add878c","originalAuthorName":"吴春莺"}],"doi":"","fpage":"749","id":"00346160-2366-4a84-be64-9b17febe891a","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6f8e2683-8c0d-4d1a-886a-32117503a4bf","keyword":"2E12铝合金(2524铝合金)","originalKeyword":"2E12铝合金(2524铝合金)"},{"id":"15e628cf-88f9-4bb4-8ec4-3bdda4a23389","keyword":"电场","originalKeyword":"电场"},{"id":"422408e9-51f4-4564-8d6e-977a48934eca","keyword":"时效","originalKeyword":"时效"},{"id":"4696b5d0-ca62-4f8d-af1f-f4bfa4dbc29e","keyword":"时效硬化曲线","originalKeyword":"时效硬化曲线"},{"id":"6faf3c66-efb8-4213-b702-18be016a4f5b","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"clkxygc200905025","title":"电场对2E12铝合金时效硬化曲线和微观组织的影响","volume":"27","year":"2009"},{"abstractinfo":"研究了亚稳态奥氏体不锈钢的形变硬化,结果表明:低温下由于产生应变诱发马氏体相变,其拉伸曲线硬化阶段呈现S形,硬化指数n为非恒定值,硬化率与硬化指数n随应变量的增加表现为抛物线型.","authors":[{"authorName":"张旺峰","id":"383890cc-49bc-4425-bbd9-182c3d79d589","originalAuthorName":"张旺峰"},{"authorName":"陈瑜眉","id":"093a8fe1-d3e8-4515-ae4e-2894b2e71528","originalAuthorName":"陈瑜眉"},{"authorName":"朱金华","id":"f6ff65ad-185d-4727-83a2-ac0fc49e71d9","originalAuthorName":"朱金华"}],"doi":"","fpage":"52","id":"8c2a0db0-b2aa-40ee-b7a3-496920145cf9","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1c37b45c-9f63-4f27-a048-2aeb022ba126","keyword":"应变诱发相变","originalKeyword":"应变诱发相变"},{"id":"b29bff81-c573-4ba2-b129-5ea49a83448c","keyword":"形变硬化","originalKeyword":"形变硬化"},{"id":"155eff77-4a9c-48bf-a815-1d22bbf10a0a","keyword":"硬化指数","originalKeyword":"硬化指数"},{"id":"1cc261ee-b41f-41cb-a01e-700d7f03c3b0","keyword":"硬化率","originalKeyword":"硬化率"}],"language":"zh","publisherId":"gt200009015","title":"亚稳态奥氏体钢的形变硬化","volume":"35","year":"2000"},{"abstractinfo":"研究了低层错能奥氏体不锈钢和高锰钢低温下的变形行为,根据两者拉伸应力-应变曲线硬化阶段的相似性,提出曲线由基体硬化、行为软化和结构硬化三部分合成,应力-应变曲线的上凹特征是软化主导与硬化共同作用的结果.分析了两种材料变形过程的相似性与不同点及其原因.","authors":[{"authorName":"张旺峰","id":"c9aafdfc-71b2-4e27-a6a0-15ff522dcc65","originalAuthorName":"张旺峰"},{"authorName":"陈瑜眉","id":"f2c1dcf0-3259-4e6a-a4b8-fb8b74b86176","originalAuthorName":"陈瑜眉"},{"authorName":"朱金华","id":"399c08d6-75ff-4b47-bc7c-e7141bc1b907","originalAuthorName":"朱金华"}],"doi":"10.3969/j.issn.1001-4381.2000.02.008","fpage":"25","id":"6ad00a41-f7c7-4b37-bff1-6563eabeb480","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"5fefbb78-e5ea-47d0-816f-ab90bfd5dcad","keyword":"层错能","originalKeyword":"层错能"},{"id":"0e759225-db5e-4f2d-a491-34b017e6feb2","keyword":"基体硬化","originalKeyword":"基体硬化"},{"id":"088c4982-6c2f-4a59-aae0-79b76a096ee6","keyword":"行为软化","originalKeyword":"行为软化"},{"id":"90763764-427b-4376-92e6-5c689459a268","keyword":"结构硬化","originalKeyword":"结构硬化"}],"language":"zh","publisherId":"clgc200002008","title":"低层错能奥氏体钢的变形硬化特点","volume":"","year":"2000"},{"abstractinfo":"通过爆炸冲击载荷作用对AgCu板表面硬化效应进行试验研究.试验采用梯形布药方法获得单位面积AgCu板在不同爆炸冲击载荷后与其表面硬化程度的关系曲线.通过检测硬化后AgCu板表面硬度、耐磨性等主要指标,均表现出突出的硬化效应和耐磨效果.通过对其表面组织进行微观分析,得出硬化层是由晶粒细化、大量形变孪晶、位错缠结、析出相阻碍位错运动等综合因素引起.","authors":[{"authorName":"肖建国","id":"2d3ab5bc-6de0-4d87-b85b-ed08866d83cd","originalAuthorName":"肖建国"},{"authorName":"佟铮","id":"eef63b83-c54e-4d5a-a837-da81d0def844","originalAuthorName":"佟铮"},{"authorName":"李进福","id":"e2e2883d-fde8-4d0b-9ea7-c2126a89ee27","originalAuthorName":"李进福"}],"doi":"10.3969/j.issn.1004-244X.2010.02.013","fpage":"45","id":"95fa1846-943a-4525-bcc4-3df935f8c355","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f2e7c206-cc37-4bdb-97f1-e152773dfd22","keyword":"爆炸硬化","originalKeyword":"爆炸硬化"},{"id":"3203940f-0904-432b-baac-2774fe7c1e16","keyword":"AgCu板","originalKeyword":"AgCu板"},{"id":"38a8dd2c-e286-48be-9788-216c0dc7e42e","keyword":"硬度","originalKeyword":"硬度"},{"id":"b055e06e-b0b5-40c5-b874-a15eb6e6b14b","keyword":"耐磨性","originalKeyword":"耐磨性"},{"id":"8535006e-6d4f-4437-bde0-0a6a6379e285","keyword":"晶粒细化","originalKeyword":"晶粒细化"}],"language":"zh","publisherId":"bqclkxygc201002013","title":"AgCu板爆炸硬化试验研究","volume":"32","year":"2010"},{"abstractinfo":"对高锰耐磨钢Mn13进行了应变疲劳试验,研究了循环变形过程中的微观结构变化以及加工硬化机制。结果表明,高锰钢在室温和低温下均发生循环硬化。室温应变疲劳形成位错胞状结构,低温应变疲劳仅形成缠结位错。高锰钢具有极高加工硬化能力不是形变孪晶的结果。","authors":[{"authorName":"宋小龙","id":"e2dffee8-b100-4599-8dbe-65f250e603d3","originalAuthorName":"宋小龙"},{"authorName":"鄢文彬","id":"ed1f5852-b8d3-485f-9551-67c95c874301","originalAuthorName":"鄢文彬"},{"authorName":"涂铭旌","id":"d4fbf09a-974c-4d00-8544-f304e60cba77","originalAuthorName":"涂铭旌"}],"categoryName":"|","doi":"","fpage":"44","id":"f32b6f41-ce2d-42d7-a023-82d5aafd4602","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"37eae2ac-e521-4975-af4a-67d392c15277","keyword":"高锰钢","originalKeyword":"高锰钢"},{"id":"903413a8-f6d1-41fd-92e6-50d8359a6b25","keyword":"cyclic deformation","originalKeyword":"cyclic deformation"},{"id":"d14d888d-b96c-41d6-9b60-a91375b5a880","keyword":"work hardening","originalKeyword":"work hardening"},{"id":"8beda28f-370c-4597-b500-cd03071b46dc","keyword":"deformation twin","originalKeyword":"deformation twin"}],"language":"zh","publisherId":"1005-3093_1991_1_13","title":"高锰钢的低温循环硬化及加工硬化","volume":"5","year":"1991"},{"abstractinfo":"由于变形过程中产生应变诱发马氏体相变, 亚稳奥氏体不锈钢低温下硬化曲线呈S形. 在每隔1.5%的工程应变小区间利用Hollomon公式求得硬化指数n, 发现n值不是常数. 而且n值和硬化率随应变的增加呈抛物线形变化, n值随着应变率的增高相应的减小.","authors":[{"authorName":"张旺峰","id":"c7eca6ae-02ee-47ee-9d4f-f29681fef3ef","originalAuthorName":"张旺峰"},{"authorName":"陈瑜眉","id":"613a9379-c02f-4347-a701-bf1f698af068","originalAuthorName":"陈瑜眉"},{"authorName":"朱金华","id":"2af04815-f3c8-435d-a346-a8277377b8e7","originalAuthorName":"朱金华"}],"doi":"","fpage":"22","id":"a2ee0f97-c131-4c5a-a759-506ccb355bb8","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"261be260-4818-4cb3-ab9e-34bceeaa0bd2","keyword":"硬化指数","originalKeyword":"硬化指数"},{"id":"24592a69-af16-4ff5-94a1-60380dd54dde","keyword":"硬化率","originalKeyword":"硬化率"},{"id":"5c86e055-aa0a-47d9-9cd1-c3610f5b8bef","keyword":"亚稳态材料","originalKeyword":"亚稳态材料"}],"language":"zh","publisherId":"xyjsclygc200201006","title":"亚稳态奥氏体不锈钢的硬化行为","volume":"31","year":"2002"}],"totalpage":1372,"totalrecord":13712}