{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"共聚合在理论研究和在生产实践中都具有重要的意义,共聚物组成及其控制是最重要的内容,其中有一些难点需要深入解析.文中在推导中引入竞聚率,得到共聚物组成的(物质的)量比微分方程、(物质的)量分率微分方程及质量分率微分方程;解释共聚的类型及意义;介绍计算关键点(f1,F1)绘制共聚物组成曲线简图的方法;由共聚物组成的积分方程绘图来解释共聚物组成的控制方法及原理.","authors":[{"authorName":"赵殊","id":"913824e7-48b6-4606-9dc0-4373199caccf","originalAuthorName":"赵殊"}],"doi":"","fpage":"164","id":"677a9a60-7ddc-4284-978e-f33e2f8fe09b","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"bde70817-c894-4342-b399-3877343dcad4","keyword":"共聚物组成","originalKeyword":"共聚物组成"},{"id":"2e96a27e-ee2e-4cc8-b5fe-3b8fbb795d5c","keyword":"竞聚率","originalKeyword":"竞聚率"},{"id":"d3ad5d7c-a986-4f1b-86b0-92102b485726","keyword":"量比","originalKeyword":"量比"},{"id":"973861f0-f2b0-4b7a-ae77-00be4b179ed6","keyword":"量分率","originalKeyword":"量分率"},{"id":"43cbb1d8-a55f-4bfc-9066-496a77cd8e91","keyword":"质量分率","originalKeyword":"质量分率"},{"id":"ef42c23a-7f9b-42f0-a47f-78a4b8c9360f","keyword":"微分方程","originalKeyword":"微分方程"},{"id":"58fb83cf-a589-4b95-b9b5-769cbdc90255","keyword":"积分方程","originalKeyword":"积分方程"},{"id":"afd221c7-07f0-4a65-8736-b775287f1219","keyword":"组成曲线","originalKeyword":"组成曲线"},{"id":"98f8d6a5-7e46-4221-bb70-0ff32a405300","keyword":"组成控制","originalKeyword":"组成控制"}],"language":"zh","publisherId":"gfzclkxygc201311038","title":"共聚物组成及其控制","volume":"29","year":"2013"},{"abstractinfo":"采用扫描电镜及能谱仪,透射电镜和比电容检测等方法研究了中间退火前后冷轧变形量对3003铝合金阴极箔第二相分布及比电容的影响.结果表明:随着最终冷变形程度的增加,位错密度增大,从而比电容值显著提高;最终冷轧变形量为90%时,比电容达到最大值,继续增加冷轧变形量,比电容值反而下降;但对于最终冷轧变形量95%的箔材,由于中间退火前冷轧变形量较低,使得退火过程中析出的弥散第二相数目减少,最终导致成品箔中的腐蚀位置减少,比电容降低.","authors":[{"authorName":"张新明","id":"5bd029f8-998d-4fa0-b4a5-f990f356e183","originalAuthorName":"张新明"},{"authorName":"蹇雄","id":"80a1d21e-82ec-4c11-8c92-f657974c4011","originalAuthorName":"蹇雄"}],"doi":"","fpage":"334","id":"e1421519-f57d-432f-9fa8-de755f5a3e5c","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c6411637-720a-48ef-9ea7-e1f4d0e654d3","keyword":"3003铝合金","originalKeyword":"3003铝合金"},{"id":"301f0da2-c3cb-4afe-bb72-e913729d5dbb","keyword":"比电容","originalKeyword":"比电容"},{"id":"2491ea08-df6b-4242-896f-5fa4098bfc37","keyword":"变形","originalKeyword":"变形"},{"id":"886b1b3f-7501-437a-8e97-b4532703c12d","keyword":"位错密度","originalKeyword":"位错密度"},{"id":"c89ba2cb-1f49-416f-879a-6cc89200e91d","keyword":"第二相","originalKeyword":"第二相"},{"id":"ae2b2ad5-2bb2-479a-9c28-db269a8b9f8a","keyword":"冷轧","originalKeyword":"冷轧"}],"language":"zh","publisherId":"zgysjsxb200503002","title":"中间退火前后冷轧变形量对3003铝合金阴极箔比电容的影响","volume":"15","year":"2005"},{"abstractinfo":"以高负荷高比转速斜流叶轮为例,采用数值模拟的方法,在级环境下分析了斜流叶轮根尖加功量分配形式对于斜流叶轮总体性能、叶尖泄漏以及出口均匀性的影响,讨论了斜流叶轮根尖加功量分配影响的内在机制.结果表明,强根部设计有利于减少叶轮内部流动损失,改善叶轮出口流场的均匀性,有利于获得较高的效率;而强尖部设计则有利于获得稍高一些的失速压比.","authors":[{"authorName":"高星","id":"ce130303-dbd6-40a0-bd49-eb9cc552f9cb","originalAuthorName":"高星"},{"authorName":"刘宝杰","id":"494d74cc-f447-48fe-9a5d-5b08cf951c2e","originalAuthorName":"刘宝杰"}],"doi":"","fpage":"1475","id":"f4e658ae-c428-4079-8934-c7b2fbce185d","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7dabac26-a659-4d86-a2e8-378ce357403d","keyword":"斜流叶轮","originalKeyword":"斜流叶轮"},{"id":"5b453276-f5d2-4781-8c08-def2dc4dff31","keyword":"高比转速","originalKeyword":"高比转速"},{"id":"e66b3ac4-27a0-4b64-8208-e15cdce4a1da","keyword":"加功量分配","originalKeyword":"加功量分配"},{"id":"f73ff4f1-80a6-4d50-9968-a3d30187a240","keyword":"叶尖泄漏","originalKeyword":"叶尖泄漏"}],"language":"zh","publisherId":"gcrwlxb200809009","title":"高比转速斜流叶轮根尖加功量分配的影响分析","volume":"29","year":"2008"},{"abstractinfo":"为了研究不同影响因素对锂渣混凝土抗压强度的影响,本文以水胶比、锂渣掺量和锂渣细度为考察因素,设计正交试验;通过极差和方差分析法分析各因素对锂渣混凝土抗压强度的影响大小,并进一步分析水胶比和锂渣掺量对锂渣混凝土抗压强度的影响规律.结果表明:水胶比是影响锂渣混凝土抗压强度的主要因素,其次是锂渣掺量,最次是锂渣细度;随着龄期的增长,锂渣掺量的影响逐渐显著,锂渣细度的影响逐渐消失.锂渣混凝土前期的抗压强度低于普通混凝土或与其相当,其28 d和60d抗压强度均大于普通混凝土.锂渣混凝土抗压强度随着锂渣掺量的增加而先增大后减小,锂渣的最佳掺量为20%.当水胶比分别为0.466、0.404(0.466)和0.530时,锂渣掺量为10%、20%和30%的混凝土抗压强度增长率为最大.","authors":[{"authorName":"许开成","id":"72a19f0c-50bd-4c8d-8fbc-f07f3f171a44","originalAuthorName":"许开成"},{"authorName":"毕丽苹","id":"a3ca4ca1-a0fd-477a-8f26-d1e33977531c","originalAuthorName":"毕丽苹"},{"authorName":"陈梦成","id":"40ea7c6e-7aff-4f56-b6d6-72b675804909","originalAuthorName":"陈梦成"}],"doi":"","fpage":"3373","id":"401a2e21-f3a7-44da-8016-1973235cf3e2","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e1486b72-2e05-48b2-914c-249d3aff7b89","keyword":"水胶比","originalKeyword":"水胶比"},{"id":"a16b9dd9-648f-4457-af72-099b1f6d0516","keyword":"锂渣掺量和细度","originalKeyword":"锂渣掺量和细度"},{"id":"5a6937f8-bfa0-4718-a43e-bae9d17a0eeb","keyword":"锂渣混凝土","originalKeyword":"锂渣混凝土"},{"id":"671b7eb5-600c-4978-9d2d-74e22cb6fa07","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"e44d92bf-df1d-4194-a344-5f81f65fdba9","keyword":"影响规律","originalKeyword":"影响规律"}],"language":"zh","publisherId":"gsytb201610050","title":"水胶比、锂渣掺量和细度对混凝土抗压强度的影响研究","volume":"35","year":"2016"},{"abstractinfo":"采用熔融共混方式,利用两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)来增容聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系,主要研究PS-b-PMMA嵌段比、均聚物的分子量以及体系粘度对增容效果的影响.研究发现,非对称结构的嵌段共聚物较对称结构的嵌段共聚物更容易在体相形成胶束,胶束的形成减少了嵌段共聚物在界面的利用率.均聚物分子量增大,嵌段共聚物的胶束均增加.分散相分子量增大,造成了界面的嵌段共聚物稳定性减弱,容易扩散至分散相内部,形成胶束.连续相分子量增大致使链段溶胀力减小,嵌段共聚物胶束外围的乳化效果降低,而且连续相粘度增大,使得嵌段共聚物胶束滞留在连续相,难以迁移至界面.共混体系的混合剪切增加,粘度变小,嵌段共聚物的扩散速率加快.通过调控均聚物分子量和体系粘度,能有效地减少体相胶束的形成,增大嵌段共聚物在界面的利用率.通过Leibler干湿刷理论、焓驱溶胀聚合物刷以及Stokes-Einstein扩散理论可以解释相关的结论.","authors":[{"authorName":"叶深杰","id":"4f8b9101-eac6-41b1-b3b4-3fb503ecd351","originalAuthorName":"叶深杰"},{"authorName":"余锋","id":"aab74b0d-1536-41f0-a6b5-3c0188867e84","originalAuthorName":"余锋"},{"authorName":"王克强","id":"dfeefa82-d165-4ee3-a521-955945d5967f","originalAuthorName":"王克强"},{"authorName":"王文锦","id":"4dcb7534-e064-4cdd-9592-68fc33a82e14","originalAuthorName":"王文锦"},{"authorName":"陈忠仁","id":"58128bae-f94e-4fe8-98ec-9ffa3f1cb7d6","originalAuthorName":"陈忠仁"}],"doi":"10.11896/j.issn.1005-023X.2017.04.020","fpage":"87","id":"a95cb521-58d7-48e4-82a0-c1289796e2f8","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f84d8d14-5aa9-4419-95b8-00352d59b544","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"e605f160-02b2-47bb-8e10-657a96c6e9b8","keyword":"增容","originalKeyword":"增容"},{"id":"1247e26b-b0e7-4d94-8531-f001a6e0ed6b","keyword":"嵌段比","originalKeyword":"嵌段比"},{"id":"50093701-fc44-4c72-8373-df751d826eaa","keyword":"粘度","originalKeyword":"粘度"},{"id":"5c2712d7-1814-4383-abab-2f38345db533","keyword":"胶束","originalKeyword":"胶束"},{"id":"21966d88-550a-4a6a-b967-1e4d28222fb6","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"cldb201704020","title":"嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响","volume":"31","year":"2017"},{"abstractinfo":"主要介绍了材料力学性能中强度(刚度)、模量、比强度、比模量的概念,推导出比强度、比模量的单位.推算结果表明:比强度单位为106 m2/s2;比模量单位为109 m2/s2.","authors":[{"authorName":"李洪泉","id":"ee95d43e-bc3b-4682-b53f-de647843d14b","originalAuthorName":"李洪泉"}],"doi":"10.3969/j.issn.1007-2330.2012.01.026","fpage":"112","id":"93be2aca-fc49-487a-8b64-b42fd8a098de","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"1768d99d-3108-451a-8a37-f323f2afffc5","keyword":"强度","originalKeyword":"强度"},{"id":"bab405fa-3043-41a0-a488-ca906b56233b","keyword":"模量","originalKeyword":"模量"},{"id":"841a8d2e-dbf7-4d39-892b-a393dbeaed04","keyword":"刚度","originalKeyword":"刚度"},{"id":"690adf13-72ae-4b0f-8565-72f03f2970f6","keyword":"比强度(刚度)","originalKeyword":"比强度(刚度)"},{"id":"a25fdfe2-6097-43ab-b3eb-3a5fb8d4d555","keyword":"比模量","originalKeyword":"比模量"}],"language":"zh","publisherId":"yhclgy201201026","title":"关于比强度和比模量单位的使用辨析","volume":"42","year":"2012"},{"abstractinfo":"论述了我国高炉喷煤的发展现状,高效高炉的发展趋势是低燃料比、大喷煤量,在500kg/t燃料比下喷煤比的目标是230~300kg/t,部分高炉已形成焦炭和煤粉的消耗几乎相等的新的并列燃料结构.我国的高炉均应大力提高喷煤比,逐步改善煤粉和焦炭消耗比例.通过提高改善炉料结构、改进焦炭和喷吹煤粉的质量、提高热风温度、富氧、确保高炉稳定顺行等措施,高炉提高喷煤比均有很大的潜力.","authors":[{"authorName":"党玉华","id":"ae908231-e97b-4520-8cdd-bdccd5948691","originalAuthorName":"党玉华"},{"authorName":"张士敏","id":"bbb472a6-b969-4cda-b6e9-67cb2a1c1056","originalAuthorName":"张士敏"}],"doi":"","fpage":"15","id":"cda29a71-def3-4bf5-94cb-85482224758e","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c43a56e7-e9f9-41f0-8503-5ea70999f95e","keyword":"高炉","originalKeyword":"高炉"},{"id":"5844c005-7329-452d-ad5b-4a2a97115892","keyword":"喷煤","originalKeyword":"喷煤"},{"id":"17972e1c-2ac4-4ecf-8ddf-3ab293816903","keyword":"燃料比","originalKeyword":"燃料比"},{"id":"3ecb253b-5221-4ff5-9ec2-356f366096c0","keyword":"喷煤比","originalKeyword":"喷煤比"},{"id":"eaa543e2-fed4-4b6e-ba5c-be6c89f6b851","keyword":"燃料结构","originalKeyword":"燃料结构"}],"language":"zh","publisherId":"gt200502004","title":"高效高炉低燃料比、大喷煤比的研究","volume":"40","year":"2005"},{"abstractinfo":"将连续混炼过程的有效比能耗分为升温、混炼、脱挥和建压比能耗,并提出了计算各项的一种方法。用该方法对不同机型、不同规格、不同加工对象的连续混炼机的比能耗进行了分析。结果表明,在多数连续混炼过程中,升温比能耗在总有效比能耗中所占比例都较大,建压比能耗所占比例都很小;原料热物性是影响有效比能耗及其构成的根本因素;当原料和混炼产物质量确定时,连续混炼机的螺杆与机筒结构、螺杆直径、产量、混炼工艺等都会影响有效比能耗及其构成。","authors":[{"authorName":"李建立","id":"164e5d2f-31af-403b-83eb-c0bcbaf168c0","originalAuthorName":"李建立"},{"authorName":"马玉录","id":"b2af820f-b887-400d-90eb-a55ca7cf5963","originalAuthorName":"马玉录"},{"authorName":"谢林生","id":"ff8dccb8-397d-4b90-aa8b-45cd6833766f","originalAuthorName":"谢林生"},{"authorName":"方程","id":"7f4ff821-663c-431a-996c-e95f83b9e952","originalAuthorName":"方程"},{"authorName":"龚树云","id":"2ba8a232-f237-465c-bdee-32656c15dad2","originalAuthorName":"龚树云"}],"doi":"","fpage":"160","id":"844a21b4-d9fa-4e7d-a723-cb33198713a6","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"7027aabd-ea70-41c2-bc53-556d0fc57908","keyword":"连续混炼过程","originalKeyword":"连续混炼过程"},{"id":"5e82568d-f3b9-4628-9dd5-7ceeb22b4551","keyword":"有效比能耗","originalKeyword":"有效比能耗"},{"id":"313ceed1-8234-482c-bbdb-8eae801c8b8f","keyword":"升温比能耗","originalKeyword":"升温比能耗"},{"id":"255a5c2c-8474-41b7-bb8e-8be3da800c34","keyword":"混炼比能耗","originalKeyword":"混炼比能耗"},{"id":"cc12ee81-6ab3-4688-846e-e98b6bde4b4d","keyword":"脱挥比能耗","originalKeyword":"脱挥比能耗"},{"id":"ca5ece8f-719d-408e-a7a0-faded63b6ee7","keyword":"建压比能耗","originalKeyword":"建压比能耗"}],"language":"zh","publisherId":"gfzclkxygc201205042","title":"连续混炼过程比能耗分析","volume":"28","year":"2012"},{"abstractinfo":"阐明了小锻比锻造的概念,首次提出平面变形化的原理及纵向锥面砧可实现小锻比锻造.应用纵向锥面砧还可实现无横向拉应力锻造,提高轴类锻件的横向力学性能.小锻比锻造新工艺具有广阔的应用前景.","authors":[{"authorName":"刘国晖","id":"d0bb5295-0cb0-4930-a63f-5a6b4957fbf6","originalAuthorName":"刘国晖"}],"doi":"","fpage":"30","id":"3ebecca1-f311-4289-b925-39f0ffceee2d","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ee072c53-866b-4614-b150-50333d742ae2","keyword":"平面变形化","originalKeyword":"平面变形化"},{"id":"aa19434a-f44c-4b77-868b-9cacd155e808","keyword":"纵向锥面砧","originalKeyword":"纵向锥面砧"},{"id":"002138c7-bf1d-42d2-b9ee-d009c00f59e0","keyword":"无横向拉应力","originalKeyword":"无横向拉应力"},{"id":"68998846-9e4d-48a0-832f-076ef616364d","keyword":"横向力学性能","originalKeyword":"横向力学性能"}],"language":"zh","publisherId":"gt200111009","title":"小锻比锻造新工艺","volume":"36","year":"2001"},{"abstractinfo":"讨论了影响高炉提高喷煤比的关键技术因素,从技术上总结分析了宝钢实现高喷煤比、高利用系数、低燃料比的生产实践和经验.强调了提高生产率要在高风温、优质原燃料条件下,在接近最大炉腹煤气量指数条件下操作高炉,而不是单纯依靠加大风量提高冶炼强度增产.提出了合理喷煤比的技术分析方法.","authors":[{"authorName":"周渝生","id":"b1625f09-6282-4917-a010-cdc784fffc0c","originalAuthorName":"周渝生"},{"authorName":"项钟庸","id":"e045137f-8d25-4a5c-a057-cd5131eaf42a","originalAuthorName":"项钟庸"}],"doi":"","fpage":"1","id":"0d6d3a77-cf20-4341-8338-792136d8c028","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"31440b71-4e80-4ca9-8b10-deea3186e759","keyword":"高炉","originalKeyword":"高炉"},{"id":"2bb62f38-f8d8-444d-bf91-620fc91bbd44","keyword":"喷煤比","originalKeyword":"喷煤比"},{"id":"80fd86ec-80ea-4fbe-a4d7-ea037540ddb5","keyword":"生产率","originalKeyword":"生产率"}],"language":"zh","publisherId":"gt201002001","title":"合理喷煤比的技术分析","volume":"45","year":"2010"}],"totalpage":4027,"totalrecord":40261}