{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用超音速等离子喷涂在调质45钢基体上制备了BaTiO3涂层,运用SEM、XRD、XPS等分析手段对所制备的涂层的组织形貌、物相成分及元素价态进行表征及分析;并利用显微硬度仪和纳米压痕仪对涂层的力学性能进行了表征.结果表明,BaTiO3涂层表面为灰白色,涂层光滑平整,孔隙率为0.8%;涂层为典型的层状结构,基体与BaTiO3涂层间的结合为机械结合,平均值为42MPa;纳米压痕仪测量涂层的表面硬度为7.065GPa,弹性模量为103.77GPa,显微硬度达到648.6HV0.1,涂层显示出优良的机械性能;XRD衍射结果显示主要成分为BaTiO3相,衍射峰的晶面指数为(101)、(111)和(200).通过超音速等离子喷涂制备的涂层可以获得较好的综合性能.","authors":[{"authorName":"王海斗","id":"4cd9ff84-991a-4dfd-bcb2-851e3933e57d","originalAuthorName":"王海斗"},{"authorName":"卢晓亮","id":"47d447f2-ff8e-455b-b2fc-2bf3dd332528","originalAuthorName":"卢晓亮"},{"authorName":"李国禄","id":"de50ff8a-319e-47ed-8067-626ab72ae434","originalAuthorName":"李国禄"},{"authorName":"徐滨士","id":"fa4c3920-fcd0-4c70-a7e1-a9fcfb93d68e","originalAuthorName":"徐滨士"},{"authorName":"邢志国","id":"86d87f9d-c1c6-49ab-8146-76d49dd82e1d","originalAuthorName":"邢志国"}],"doi":"","fpage":"731","id":"937fb2bb-94b5-4515-a7d2-8617db60a874","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2a3f4ad2-fb4f-4bc4-a8f9-cea1c8924444","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"f02e1f27-3f4f-4a41-a1b2-1d0dc1147d30","keyword":"BaTiO3涂层","originalKeyword":"BaTiO3涂层"},{"id":"9c887273-05d9-4ee4-9e0d-db47765ae877","keyword":"涂层表征","originalKeyword":"涂层表征"}],"language":"zh","publisherId":"gncl201305029","title":"超音速等离子喷涂BaTiO3涂层的制备及表征","volume":"44","year":"2013"},{"abstractinfo":"综述了热喷涂涂层中气孔的特征、气孔率测量与气孔的表征方法,归纳了涂层层状结构如单个扁平粒子结构、粒子层间结合的研究结果.","authors":[{"authorName":"王卫泽","id":"9ac9c142-0052-4dc8-930f-e090a8cb8d2a","originalAuthorName":"王卫泽"},{"authorName":"李长久","id":"ef74bbfd-50ae-46bf-a2e8-740da7a70d24","originalAuthorName":"李长久"}],"doi":"10.3969/j.issn.1001-1560.2006.11.013","fpage":"43","id":"1f3e3f78-59f4-4188-928d-7adf3944c630","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"29377214-350d-4ada-8a7f-58529f48474b","keyword":"热喷涂技术","originalKeyword":"热喷涂技术"},{"id":"f969aa10-80ab-4a55-a2c0-010d371f2838","keyword":"涂层","originalKeyword":"涂层"},{"id":"55e0e2aa-6153-4987-9a4d-0cec99a2f04b","keyword":"气孔率","originalKeyword":"气孔率"},{"id":"f9b7df3e-d256-43bf-b258-697911ba1766","keyword":"层状结构","originalKeyword":"层状结构"},{"id":"1454164a-bdb4-4f81-bce7-26a8917fa84e","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"clbh200611013","title":"热喷涂涂层的结构及其表征","volume":"39","year":"2006"},{"abstractinfo":"采用溶液浸涂法,添加聚乙烯醇作为中间转换物,在碳纤维表面制备了氮化硼涂层.采用 SEM、FT-IR、XPS、TGA等测试技术对涂层的成分、结构、形貌进行了表征.实验结果表明,纤维表面没有开裂剥落,涂层与碳纤维结合良好,涂层碳纤维热稳定性良好,B 和 N 的原子分数分别为15.69%和16.97%,h-BN涂层的纯度较高.","authors":[{"authorName":"韦永山","id":"cb37c321-4978-437d-83ed-04e82952d2b0","originalAuthorName":"韦永山"},{"authorName":"杜作娟","id":"615436a9-c207-4783-aec8-ca6b9e332d8a","originalAuthorName":"杜作娟"},{"authorName":"李想","id":"c086a20e-58de-4481-a7cc-8c1f3851f7ef","originalAuthorName":"李想"},{"authorName":"黄小忠","id":"366bc087-23c3-4203-93c9-1371b59032bc","originalAuthorName":"黄小忠"},{"authorName":"惠忆聪","id":"35ae71cc-619c-49f5-9427-bfdc00547a6f","originalAuthorName":"惠忆聪"},{"authorName":"梁艳梅","id":"2a4211c7-f519-4d69-8a4d-486d3ed487b1","originalAuthorName":"梁艳梅"},{"authorName":"程勇","id":"b08dce2d-9671-48a3-bdbb-38b7dd3b3457","originalAuthorName":"程勇"},{"authorName":"周珊","id":"9289787d-af2e-4469-8bd4-b7045ce86302","originalAuthorName":"周珊"},{"authorName":"杨泽波","id":"a3f746ad-0f50-4525-b34d-8de08b5e4a86","originalAuthorName":"杨泽波"},{"authorName":"王超英","id":"6a091102-34a8-42d1-87a1-265ff855397e","originalAuthorName":"王超英"},{"authorName":"陈辉","id":"744b771e-b4b6-4767-aec3-d46a2907495f","originalAuthorName":"陈辉"},{"authorName":"龙国宁","id":"0110e882-7661-4558-9186-5795bc4193c3","originalAuthorName":"龙国宁"}],"doi":"10.3969/j.issn.1001-9731.2014.增刊(Ⅰ).017","fpage":"76","id":"209359f1-5bde-4037-ae09-3776b029ef01","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7fd6ba0-78f9-4a5d-b69e-60d1ab489cec","keyword":"浸涂法","originalKeyword":"浸涂法"},{"id":"7e383969-8523-4784-80e5-7187719539ed","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"685154a0-edad-46f8-ab16-b30f4b652cea","keyword":"h-BN涂层","originalKeyword":"h-BN涂层"},{"id":"f8afc8b6-ac90-493a-9c77-cec409163530","keyword":"碳纤维","originalKeyword":"碳纤维"}],"language":"zh","publisherId":"gncl2014z1017","title":"碳纤维表面BN涂层的制备和表征","volume":"","year":"2014"},{"abstractinfo":"耐高温涂层在涡轮喷气发动机、高温轴承、高超声速飞行器的热防护以及切削刀具等领域具有广阔的应用背景,在技术创新层面,也具有很大的潜力和良好的发展前景.首先综述了现有耐高温涂层的研究进展,主要包括扩散涂层和覆盖涂层两大类和陶瓷涂层等七小类,并进行了分类讨论.在此基础上探讨了各种耐高温涂层的制备方法和技术手段,归类总结了耐高温涂层性能的主要表征方法,综述了耐高温涂层的耐高温及失效机理,最后展望了其发展的方向.随着相关研究的深入,耐高温涂层在耐温性、抗氧化性、蠕变性、抗冲蚀性等基本性能方面得到进一步提升,同时对其力学性能、鲁棒性能等方面又提出了更高要求.","authors":[{"authorName":"武伟","id":"b14d304e-ac63-4bae-b9b3-9237a0944384","originalAuthorName":"武伟"},{"authorName":"陈桂明","id":"c7c1583b-4c87-41ae-8821-cf692032e5c6","originalAuthorName":"陈桂明"},{"authorName":"刘建友","id":"14fa3a77-560f-4a2f-83b2-0a8161f735f2","originalAuthorName":"刘建友"}],"doi":"10.11896/j.issn.1005-023X.2016.03.001","fpage":"1","id":"2c73b830-8104-482d-bb29-539cf11ae7a0","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3939a341-4e20-42fd-98ac-47fffce0fe0c","keyword":"耐高温涂层","originalKeyword":"耐高温涂层"},{"id":"0262bd43-b56d-4b91-b019-83caa7771321","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"e68f1953-2ab2-4ce4-8d41-728ab45955af","keyword":"性能表征","originalKeyword":"性能表征"},{"id":"7521d683-5b11-44ad-9e3d-1f0946ab7fa9","keyword":"耐高温机理","originalKeyword":"耐高温机理"}],"language":"zh","publisherId":"cldb201603001","title":"耐高温涂层及其性能表征的研究进展","volume":"30","year":"2016"},{"abstractinfo":"设计并采用类似搪瓷涂覆的工艺制备了羟基磷灰石-Ti6Al4V复合材料.使用XRD、SEM对复合材料的相组成和显微结构进行分析和表征,在模拟体液中观察了获得材料的生物相容性.结果表明;在涂层中,羟基磷灰石粒子均匀地分散在玻璃基体中,它们保持原有的晶格结构,未发生相分解等现象.烧成温度对中间层玻璃涂层的显微结构有着较为明显的影响.中间层玻璃涂层与钛合金的结合强度或不小于29.73MPa,远高于等离子喷涂,达到使用要求.在模拟体液中浸泡一段时间后,XPS分析表明复合材料表面有新生羟基磷灰石粒子析出,表明复合涂层有优良的生物相容性.","authors":[{"authorName":"申剑锋","id":"04adef92-3180-47a4-88c0-5c3eae5e2ab9","originalAuthorName":"申剑锋"},{"authorName":"常程康","id":"48a37d47-768d-4c43-9e74-2397b0f64355","originalAuthorName":"常程康"},{"authorName":"毛大立","id":"b87da299-21dd-4077-b92e-7d9179fa7987","originalAuthorName":"毛大立"},{"authorName":"吴建生","id":"43e3c5fc-d7f5-4a04-8ae2-6a55613cbdab","originalAuthorName":"吴建生"}],"categoryName":"|","doi":"","fpage":"993","id":"3f6d808c-78bb-4cdb-ad06-44b690964eb2","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a121e85c-1a57-4e27-b02e-db3117fc7654","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"7300016a-a16f-42a4-97e7-4bff4bfeadc2","keyword":" bioglass","originalKeyword":" bioglass"},{"id":"66b6a64e-99c9-46dc-a97c-b5d63bf7b0e8","keyword":" coating","originalKeyword":" coating"},{"id":"6ce05679-9bac-4039-8320-8d440aa300a2","keyword":" bioactivity","originalKeyword":" bioactivity"}],"language":"zh","publisherId":"1000-324X_2001_5_15","title":"羟基磷灰石涂层材料的制备及其性能表征","volume":"16","year":"2001"},{"abstractinfo":"设计并采用类似搪瓷涂覆的工艺制备了羟基磷灰石-Ti6A14V复合材料.使用XRD、SEM对复合材料的相组成和显微结构进行分析和表征,在模拟体液中观察了获得材料的生物相容性.结果表明:在涂层中,羟基磷灰石粒子均匀地分散在玻璃基体中,它们保持原有的晶格结构,未发生相分解等现象.烧成温度对中间层玻璃涂层的显微结构有着较为明显的影响.中间层玻璃涂层与钛合金的结合强度或不小于29.73MPa,远高于等离子喷涂,达到使用要求.在模拟体液中浸泡一段时间后,XPS分析表明复合材料表面有新生羟基磷灰石粒子析出,表明复合涂层有优良的生物相容性.","authors":[{"authorName":"申剑锋","id":"32bd06bf-278b-4dea-a1d8-ccb6d7ca5cdb","originalAuthorName":"申剑锋"},{"authorName":"常程康","id":"b7d73566-e218-4760-abbe-5ab8a183bf86","originalAuthorName":"常程康"},{"authorName":"毛大立","id":"1148554c-3be6-4883-8429-2e1ba8e543f9","originalAuthorName":"毛大立"},{"authorName":"吴建生","id":"33b16861-467a-42d0-a825-d6e3cdf39d1a","originalAuthorName":"吴建生"}],"doi":"10.3321/j.issn:1000-324X.2001.05.037","fpage":"993","id":"dc35479b-bfe7-43f0-ac55-a6fbad06fcbd","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f1134db1-7003-4e0f-a7e6-85e0194aa474","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"153b8312-4279-49f4-afd3-109b311d0842","keyword":"生物玻璃","originalKeyword":"生物玻璃"},{"id":"911954c9-bc03-4545-8afd-0bee5d1682bc","keyword":"涂层","originalKeyword":"涂层"},{"id":"5b9bb411-50be-4c6b-ad2c-161a2eadf259","keyword":"生物相容性","originalKeyword":"生物相容性"}],"language":"zh","publisherId":"wjclxb200105037","title":"羟基磷灰石涂层材料的制备及其性能表征","volume":"16","year":"2001"},{"abstractinfo":"采用溶胶-凝胶法在铁铬合金基体上制备掺杂钙元素的La1-xCaxCrO3导电涂层;用IR、UV分析溶胶成分,DTA、TG、XRD和SEM、AFM等手段研究了涂层相变规律和表面形貌,四探针法测定涂层的电阻率.结果表明:用低浓度溶胶多次热处理可以得到粗糙度RMS为60~70 nm、厚度为300~400 mm的涂层,在Ca2+的掺入量为0.1~0.14 mol/L之间时涂层具有最佳导电性.","authors":[{"authorName":"姜阳","id":"5b26e8d4-d43d-436a-8a89-af8e9aae2836","originalAuthorName":"姜阳"},{"authorName":"姜建华","id":"45c0fca3-91e8-4f3e-96d1-7d65efcf23ab","originalAuthorName":"姜建华"},{"authorName":"朱源泰","id":"297133ff-f0eb-4420-968e-c21179302f9a","originalAuthorName":"朱源泰"}],"doi":"10.3969/j.issn.1002-6495.2009.04.003","fpage":"358","id":"2085f6e5-6ca9-45d2-babc-f16f098c926f","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"790b1257-6219-486c-8b96-3a8e0f028b3e","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"305cc930-5ddf-4df7-a479-e4d70bc79a07","keyword":"La1-xCaxCrO3","originalKeyword":"La1-xCaxCrO3"},{"id":"99680699-96ae-4ccf-9c05-00441d02ca6e","keyword":"涂层","originalKeyword":"涂层"},{"id":"eb680434-280e-4a8d-ae2e-8a1b5e337cf5","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"fskxyfhjs200904003","title":"La1-xCaxCrO3导电涂层制备及其表征","volume":"21","year":"2009"},{"abstractinfo":"考察了沉积温度、稀释气体流量对化学气相沉积(CVD)SiC涂层的显微结构及晶体结构的影响,分析得出:沉积温度为1100℃,稀释气体Ar流量<400mL/min时,制备的SiC涂层晶体结构完整、致密.在该制备工艺条件下沉积的SiC涂层密度为3.204 g/cm3,显微硬度为HV 4459.2,弹性模量为471GPa,涂层具有优异的光学加工性能,光学加工后表面粗糙度为0.429nm,能满足光学应用的要求.","authors":[{"authorName":"刘荣军","id":"7f12beb9-1444-406c-907a-4fe11ada844d","originalAuthorName":"刘荣军"},{"authorName":"张长瑞","id":"3efb696d-84bc-4999-9f8e-f43e3ed24f30","originalAuthorName":"张长瑞"},{"authorName":"周新贵","id":"d96e4805-d9e8-4d4d-91e1-18c855877526","originalAuthorName":"周新贵"},{"authorName":"曹英斌","id":"344a4ddf-2403-406b-9b25-06d5ad036796","originalAuthorName":"曹英斌"},{"authorName":"刘晓阳","id":"f316129a-6ff7-4e9f-93d2-1a1c129ad7b6","originalAuthorName":"刘晓阳"}],"doi":"10.3969/j.issn.1001-4381.2005.04.001","fpage":"3","id":"fd73edca-b749-45f2-9c48-5e62727bf89e","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"b3a18986-51e9-4228-831e-339d281e7db0","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"d247ec22-bc35-4b90-95fb-49edd917d194","keyword":"SiC涂层","originalKeyword":"SiC涂层"},{"id":"b9e5ff81-fbf1-41e0-ac1c-5b93543736ec","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"339517c2-d9f9-45b9-ae39-0fa991d1c9e1","keyword":"性能表征","originalKeyword":"性能表征"}],"language":"zh","publisherId":"clgc200504001","title":"CVD SiC致密表面涂层制备及表征","volume":"","year":"2005"},{"abstractinfo":"以全氢硅氮烷树脂为成膜物,以纳米SiO2为填料,在石英织物表面制备出了防潮性能优良的陶瓷前驱体基防潮涂层.采用SEM、EDS、IR、DSC-TG等研究了防潮涂层在固化和高温加热过程中的结构变化,测试了其防潮性能.结果表明,在40℃、95%湿度环境下放置24h,该防潮涂层可将石英织物的吸潮率从11.71%降到0.31%,且涂层主要组分与石英织物基材组分一致,因而其无线电波透过能力与石英织物基材相近.","authors":[{"authorName":"李俊峰","id":"0247f903-490d-4703-823a-a564cd09c607","originalAuthorName":"李俊峰"},{"authorName":"卢鹉","id":"dde12b9f-4b15-407b-a595-ed71dff821f5","originalAuthorName":"卢鹉"},{"authorName":"罗正平","id":"ee98c0fd-ef1b-4f25-bac6-3f22d7d26ca9","originalAuthorName":"罗正平"},{"authorName":"赵立波","id":"dbd7b687-b49c-4354-88ef-7fc34a2861b9","originalAuthorName":"赵立波"},{"authorName":"金珂","id":"b54e3a17-6392-4097-a81a-c85d76dd58fb","originalAuthorName":"金珂"}],"doi":"10.3969/j.issn.1007-2330.2016.02.004","fpage":"19","id":"adf4916f-5766-4da5-811a-71a47aa1fbc5","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"4018edf2-ab13-4daa-a080-55ab4cd239ae","keyword":"陶瓷前驱体","originalKeyword":"陶瓷前驱体"},{"id":"09f1eeb0-46af-41d0-ae7b-5818477b14b8","keyword":"防潮","originalKeyword":"防潮"},{"id":"0bb582dc-0ed5-45e8-b2ba-20a16da47ee2","keyword":"涂层","originalKeyword":"涂层"},{"id":"3139d648-d067-4457-a925-728f4c626980","keyword":"吸潮率","originalKeyword":"吸潮率"}],"language":"zh","publisherId":"yhclgy201602004","title":"陶瓷前驱体基防潮涂层制备及其性能表征","volume":"46","year":"2016"},{"abstractinfo":"在含有Ca2+和PO43-的电沉积液中,以硅基板为阴极,在其表面制备了HAP涂层,并用XRD、SEM、AFM及纳米压痕对涂层进行表征.通过对不同电沉积时间的涂层进行分析,可知加上电压后可以快速的在硅基板表面形成HAP的涂层,随着沉积时间延长,晶粒长大,涂层增厚,并在涂层上产生裂纹.由XRD图谱可知在最初阶段形成的HAP晶粒结晶度低,为无定型态状态,随着电沉积时间延长,组成涂层的晶粒结晶程度提高,XRD峰值增大变得尖锐.AFM分析表明晶粒生长均匀,粗糙度较低,纳米压痕测试结果显示涂层的力学性能较低.","authors":[{"authorName":"岳雪涛","id":"e78824cb-b22e-49c0-b4f3-b9f3d490d64b","originalAuthorName":"岳雪涛"},{"authorName":"田清波","id":"dce21021-3046-4609-a44f-be5bf01ae725","originalAuthorName":"田清波"},{"authorName":"张丰庆","id":"a7a8913f-a5e8-4026-9421-fe7659e227f9","originalAuthorName":"张丰庆"},{"authorName":"孙德明","id":"611f13e4-e90d-49bb-a3ca-ac4122121d1f","originalAuthorName":"孙德明"},{"authorName":"孙康宁","id":"72bb5e72-efa1-4471-96c3-8d2485bfd78b","originalAuthorName":"孙康宁"}],"doi":"","fpage":"1188","id":"0dee0ae8-295b-462c-a19f-7b33efeecdc4","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"16b8ec8e-0b6a-48a1-9bb8-bc86b1fd353a","keyword":"硅基板","originalKeyword":"硅基板"},{"id":"6647770d-9f01-478a-9578-dc1d16080eb3","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"b0ffeb9a-d10a-4f79-a8e1-a70dfaa428be","keyword":"HAP涂层","originalKeyword":"HAP涂层"}],"language":"zh","publisherId":"gsytb201604033","title":"硅基板表面电沉积法制备HAP涂层及表征","volume":"35","year":"2016"}],"totalpage":3174,"totalrecord":31736}