{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用稳定的交替方向隐式(SADI)有限差分方法、上限元法(UBET)等数值计算方法模拟了融、凝固和大塑性变形为一体的液态后直接挤压的工艺过程。计算机生成的动画图象直观地表现了工件的整个成型过程。模拟结果有助于掌握金属基复合材料后直接挤压这一新工艺的各种工艺规律。","authors":[{"authorName":"任向前","id":"15e69e3e-6054-46c4-97b7-77c640ef5eb8","originalAuthorName":"任向前"},{"authorName":"胡连喜","id":"5a98802c-3010-4a75-a460-41721d940800","originalAuthorName":"胡连喜"},{"authorName":"孙晓梅","id":"97aa4a90-7270-42ab-a105-6d54702d6d9e","originalAuthorName":"孙晓梅"},{"authorName":"罗守靖","id":"cd780d41-26fe-4540-901c-104f29c2694f","originalAuthorName":"罗守靖"}],"categoryName":"|","doi":"","fpage":"544","id":"6312a6a1-7594-442e-bf9e-e08681b9f3d2","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8d347ba9-f917-4912-a941-955a3183755f","keyword":"液态","originalKeyword":"液态浸渗"},{"id":"966af3a8-5a9f-4841-8b20-b4eb6cc42dea","keyword":" composite","originalKeyword":" composite"},{"id":"9c370d03-cae4-43a0-8996-59bda62680d0","keyword":" numerical simulation","originalKeyword":" numerical simulation"}],"language":"zh","publisherId":"0412-1961_1996_5_4","title":"Al_2O_3sf/LY12复合材料型材液态后直接挤压过程的数值模拟","volume":"32","year":"1996"},{"abstractinfo":"从流体动力学出发导出了液态金属纤维预制件的动力学模型.实验研究了碳纤维增强铝基复合材料的渗过程,测定了速度和系数.结果表明:实验数据与模型吻合;还发现了两种不同的方式,均匀和非均匀;并提出一种复合材料制造新工艺.用此工艺在不润湿的情况下,在低压力下制出高质量的C/Al复合材料。","authors":[{"authorName":"夏振海","id":"b351df52-0857-4c40-830f-20d9011bf32c","originalAuthorName":"夏振海"},{"authorName":"毛志英","id":"54ed5c3c-e915-43c8-ac58-89b7700f4cee","originalAuthorName":"毛志英"},{"authorName":"周尧和","id":"2173a501-da67-4c81-a2a6-033e5f22037b","originalAuthorName":"周尧和"}],"categoryName":"|","doi":"","fpage":"138","id":"dcd9a2ec-bd51-4015-b38b-0bd4fb111d89","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"bd494143-b6ab-45fd-9f0e-55da04e8f286","keyword":"液态金属","originalKeyword":"液态金属浸渗"},{"id":"7f50c4aa-3c06-4b4d-be42-9c3d5af07c6b","keyword":"infiltration model","originalKeyword":"infiltration model"},{"id":"dcad823e-d59d-49de-b49b-18fa97b1b5ac","keyword":"C/Al composite","originalKeyword":"C/Al composite"},{"id":"8fb4b137-cdb5-4628-b49f-9f330b979ceb","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1991_6_10","title":"液态金属动力学模型及其应用","volume":"27","year":"1991"},{"abstractinfo":"液态制备法因具有成本低、工艺简单和可操作性强等特点而广泛应用于金属基复合材料的工业化生产.其中,液态法制备复合材料的关键在于渗过程,因此如何控制渗过程中的工艺参数来制造高质量的复合材料是人们一直关注的课题.综述了液态法制备金属基复合材料的动力学模型研究现状,分析了当前研究中存在的问题,提出了相关建议,展望了复合材料动力学模型的发展趋势.","authors":[{"authorName":"李海舟","id":"e9f71c96-8d8a-4dd2-94bf-471c33ea8dc3","originalAuthorName":"李海舟"},{"authorName":"卢德宏","id":"14126d2c-b1e5-4084-b5f9-1ace94299da0","originalAuthorName":"卢德宏"},{"authorName":"蒋业华","id":"9cb3c932-5a69-4bd8-9441-2890c14c9edf","originalAuthorName":"蒋业华"}],"doi":"10.11896/j.issn.1005-023X.2016.011.013","fpage":"77","id":"df9502a2-7259-4339-8c0f-003801d076f7","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"23f056f5-436e-4c23-a925-3ad36e23fad9","keyword":"液态法","originalKeyword":"液态浸渗法"},{"id":"ee494da0-8a23-4d07-81e3-3c15a72366bb","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"f686ba49-9b0d-4e3b-ba71-c3f31c00005e","keyword":"动力学模型","originalKeyword":"浸渗动力学模型"}],"language":"zh","publisherId":"cldb201611013","title":"液态法制备金属基复合材料动力学模型的研究进展","volume":"30","year":"2016"},{"abstractinfo":"采用液态挤压法制备了硼酸铝晶须增强铝基复合材料(简称(AlBO)w/Al),通过OM,XRD,EDS,SEM及TEM等研究手段对其微观缺陷进行观察分析.发现(AlBO)w/Al复合材料中的主要缺陷并非硼酸铝晶须与基体之间的界面反应产物,而是制备过程中晶须的偏聚重融、基体合金中析出的铜铝化合物Al2Cu及显微缩孔,它们作为复合材料的主要缺陷而成为裂纹源,最终影响复合材料的力学性能.","authors":[{"authorName":"李正佳","id":"48bf07da-6621-472b-bbfd-ab25c12a06b6","originalAuthorName":"李正佳"},{"authorName":"李贺军","id":"cf5f2dc7-a000-49a3-9b86-fc2a1e4cb052","originalAuthorName":"李贺军"},{"authorName":"齐乐华","id":"a3814452-bbdf-4944-9307-8d7bd9a0c032","originalAuthorName":"齐乐华"},{"authorName":"欧阳海波","id":"6928f7d7-9356-4394-ab05-2e6c1f19e361","originalAuthorName":"欧阳海波"},{"authorName":"魏剑","id":"701f9d94-c5f0-49e0-9150-c8b1493a2307","originalAuthorName":"魏剑"}],"doi":"","fpage":"2144","id":"a3847e08-8f8b-44a1-baa4-130c330feedb","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a4433899-ee44-4d1d-80ba-5680f464dfdc","keyword":"液态挤压","originalKeyword":"液态浸渗挤压"},{"id":"b5a814be-5479-4506-875a-218965b5e190","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"a44b7725-d371-4039-9d85-ae60145ef761","keyword":"铜铝化合物","originalKeyword":"铜铝化合物"},{"id":"d3790d50-1e4a-427e-b37a-5c097bb2466d","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"xyjsclygc200712017","title":"液态挤压制备(AlBO)w/Al复合材料缺陷分析","volume":"36","year":"2007"},{"abstractinfo":"建立了Al_2O_(3sf)/2A12铝基复合材料液态挤压表面缺陷预测的数学模型,基于L9(3~4)正交试验实验表模拟了9种在不同工艺参数下液态挤压成形Al_2O_(3sf)/2A12铝基复合材料制件的损伤分布规律,研究了工艺参数对损伤形成的影响规律.结果表明:由于不均匀变形以及制件表面的局部过热,在坯料模角处易产生表面环向裂纹;保压时间对表面损伤形成的影响最大,其次为浇注温度和模具预热温度,挤压速度的影响比较小.通过优化工艺参数,可以有效地避免表面损伤的产生,挤出表面质量良好的制件,模拟结果与实验结果基本吻合.","authors":[{"authorName":"刘健","id":"e303971e-039c-4dba-bf72-52ba1a49fb9b","originalAuthorName":"刘健"},{"authorName":"齐乐华","id":"14c979f1-f5df-41d9-96f7-60056cde313e","originalAuthorName":"齐乐华"},{"authorName":"周计明","id":"0b93f490-55be-4295-8cc0-87ffe22feda8","originalAuthorName":"周计明"},{"authorName":"苏力争","id":"90476979-b755-461b-b0e9-84b4e7f097ad","originalAuthorName":"苏力争"}],"doi":"","fpage":"616","id":"fbe369ba-b16d-421f-8943-56bf7b17a4c9","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"b2aa1aaa-3cdc-4bce-81e7-27e343500ec2","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"45401b51-abbd-4fd2-8e20-cb24ed1ab8cf","keyword":"液态挤压","originalKeyword":"液态浸渗挤压"},{"id":"a4145274-2001-420d-939d-502286eaa8d3","keyword":"表面损伤","originalKeyword":"表面损伤"},{"id":"bf546ebd-c244-430f-9989-4692ec0200c9","keyword":"有限元","originalKeyword":"有限元"},{"id":"c95995e1-accf-4e29-b805-961c53f04387","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"clyjxb200906010","title":"液态挤压Al_2O_(3sf)/2A12铝基复合材料表面损伤的预测","volume":"23","year":"2009"},{"abstractinfo":"采用正交回归设计实验方法,研究了时间和热扩散时间对45钢层厚度的影响规律,建立了层回归方程.结果表明,时间越长,扩散时间越长,层厚度越大,层逐渐出现了空洞和裂纹,最佳工艺参数为:2 min,扩散2 h.","authors":[{"authorName":"李飞舟","id":"985b8376-ca5c-4857-a893-b7b16750a57f","originalAuthorName":"李飞舟"}],"doi":"10.3969/j.issn.1001-3660.2010.02.013","fpage":"41","id":"75a55ee5-716d-491d-90e7-862611d56e56","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"bbe81f99-6f4f-4b36-9350-c47142bd8d4b","keyword":"45钢","originalKeyword":"45钢"},{"id":"4a6f12a5-7083-405e-95fb-57068deccd4d","keyword":"铝","originalKeyword":"渗铝"},{"id":"bb699ec7-e9f3-45da-a16d-a79b22524d3c","keyword":"正交回归试验","originalKeyword":"正交回归试验"}],"language":"zh","publisherId":"bmjs201002013","title":"45钢热层厚度分析","volume":"39","year":"2010"},{"abstractinfo":"利用液态技术制备了氧化铝纤维增强铝基复合材料.结果表明,在低压下使液态合金纤维预制件制备铝基复合材料是可行的,在渗过程中,液态合金的温度对压力有较大影响.所制备的复合材料组织均匀,基体中的共晶组织可依附在纤维表面形核生长.","authors":[{"authorName":"刘小梅","id":"4fbef6e8-6680-4c98-8e5d-98f54ca153ed","originalAuthorName":"刘小梅"},{"authorName":"刘政","id":"6c8246e1-99bb-4b32-a708-eb6b4ac60bab","originalAuthorName":"刘政"}],"doi":"10.3969/j.issn.1007-2330.2003.03.008","fpage":"29","id":"fc553ba1-487c-4232-8842-0ca873eac5f0","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"bd94e15f-5950-4e41-9604-3e1d420e90c6","keyword":"氧化铝纤维","originalKeyword":"氧化铝纤维"},{"id":"20f4a6ac-ddde-4350-92d7-0e565789e922","keyword":"低压","originalKeyword":"低压"},{"id":"db943599-94c5-42a7-9a6f-73394fdf9b7f","keyword":"","originalKeyword":"浸渗"},{"id":"97bb3829-3535-4297-a2ee-905a4ba9a0eb","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"yhclgy200303008","title":"低压力制备短纤维增强铝硅合金复合材料","volume":"33","year":"2003"},{"abstractinfo":"通过铁合金无压含镍氧化铝陶瓷的方法,制备了陶瓷/铁合金复合材料.其工艺过程是:将镍粉与陶瓷粉混合球磨后,压制成具有网络结构的陶瓷体,经烧结成瓷后,铁合金无压,温度1600℃,保温4h.研究结果表明,含镍陶瓷与铁合金在界面处形成锯齿状的机械啮合,两相之间无过渡层以及微裂纹存在;铁合金中的Fe、Cr元素呈梯度分布在陶瓷基体的金属相中,说明铁合金渗到陶瓷基体,深度可达400μm.最后,利用液态金属的扩散原理分析了渗过程.","authors":[{"authorName":"杨少锋","id":"3a1f1f8c-bcb1-4c38-a8bc-cc0b3e939664","originalAuthorName":"杨少锋"},{"authorName":"陈维平","id":"81a6a2f4-b4f2-4539-a82c-a5bc5e30138c","originalAuthorName":"陈维平"},{"authorName":"韩孟岩","id":"ff4067f8-1572-4d80-af9f-71f719612c62","originalAuthorName":"韩孟岩"},{"authorName":"朱德志","id":"b562cf30-5fb0-4336-8404-7f51e65ea09a","originalAuthorName":"朱德志"}],"doi":"","fpage":"486","id":"b3347fd9-8bd2-4b36-8137-2b03b8c0695a","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b9896a45-b76f-45e2-a72e-f79e9a22f023","keyword":"无压","originalKeyword":"无压浸渗"},{"id":"f9410fc5-c31d-4e4b-8eee-9f3070209b79","keyword":"三维结构","originalKeyword":"三维结构"},{"id":"6f8d0e78-3781-46ed-b42a-31b56d65e6fd","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"70f883de-bc48-42d2-addc-27ca593edce9","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"3f3413ef-4bcb-49ab-a91b-efaab4599f16","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"gncl201103028","title":"无压制备含镍陶瓷/铁基合金复合材料微观组织及机理","volume":"42","year":"2011"},{"abstractinfo":"本文采用无压法,研究时间对Al/SiCp陶瓷基复合材料组织、致密度、硬度的影响.保温时间1h,能浸透,但致密度差,硬度低.保温时间3h,发生粉化现象.结果表明保温时间2h是无压较好的工艺参数.","authors":[{"authorName":"徐跃","id":"1e63255c-0436-4897-91af-2a96815ab898","originalAuthorName":"徐跃"},{"authorName":"高霖","id":"26f7b577-5501-4f07-b90b-0df3c192ee7b","originalAuthorName":"高霖"},{"authorName":"崔崇","id":"825b6381-78b3-403d-8f5f-5321ce06c088","originalAuthorName":"崔崇"},{"authorName":"钱凤","id":"c694a2e2-d7bc-4fd3-bb81-17106e2c92ac","originalAuthorName":"钱凤"}],"doi":"10.3969/j.issn.1003-1545.2011.04.005","fpage":"20","id":"eec445b4-7e37-4ebf-b331-8816cc85d485","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"6f793350-939e-454e-95fc-392d7f815d76","keyword":"A1/SiCp陶瓷基复合材料","originalKeyword":"A1/SiCp陶瓷基复合材料"},{"id":"253f1f44-e9c3-4d34-9e44-d3e499c67c08","keyword":"无压","originalKeyword":"无压浸渗"},{"id":"91b62711-f53e-46ed-abeb-35e0b862dd3d","keyword":"组织","originalKeyword":"组织"},{"id":"8a79cea8-a08e-46cd-b880-d7782425c648","keyword":"致密度","originalKeyword":"致密度"},{"id":"c9f695f4-e57a-4df9-b95f-aeca24ef9c11","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"clkfyyy201104005","title":"时间对无压制备Al/SiCp陶瓷基合材料的影响","volume":"26","year":"2011"},{"abstractinfo":"对热处理后的热镀铝钢进行研究,采用金相法对其显微组织进行分析,采用冲刷磨损试验、腐蚀试验及高温氧化试验对其进行性能测试分析.耐磨试验和腐蚀试验表明:钢经铝后,其合金相硬度较高,具有较好的耐磨性,合金层表面的层对基体起到了阴极保护作用,提高了其耐腐蚀性能.高温氧化实验结果表明:铝钢抗高温氧化性能远远优于碳钢基体,与不锈钢的抗高温氧化性能相当.","authors":[{"authorName":"周灿旭","id":"ecda08c3-8838-409d-8210-659223549fb0","originalAuthorName":"周灿旭"},{"authorName":"刘越洲","id":"e27098c2-195d-46a7-a632-413d53ecb834","originalAuthorName":"刘越洲"},{"authorName":"糜亮","id":"274c6ddf-4c88-4afb-89f2-767b2e1b6f33","originalAuthorName":"糜亮"},{"authorName":"丁毅","id":"6628e9c3-97c7-4ad9-bd63-f75d5ecb4926","originalAuthorName":"丁毅"},{"authorName":"马立群","id":"1d93331c-4800-4bc4-a1c0-57f2d3acd29d","originalAuthorName":"马立群"}],"doi":"10.3969/j.issn.1001-3660.2009.04.007","fpage":"18","id":"75b97ff9-aa2f-4772-a3a3-748b83da5cc0","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"cd962a1a-2988-4fe7-9a5c-b0890a179310","keyword":"热铝","originalKeyword":"热浸渗铝"},{"id":"e1e84916-81ea-4448-adfa-2852963b2c84","keyword":"冲刷磨损","originalKeyword":"冲刷磨损"},{"id":"4d27efac-a91f-46e7-998d-a9a99ac94309","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"493cdb6a-805f-4ce9-8c79-246c6f1e25fd","keyword":"高温氧化","originalKeyword":"高温氧化"}],"language":"zh","publisherId":"bmjs200904007","title":"碳钢热铝性能研究","volume":"38","year":"2009"}],"totalpage":567,"totalrecord":5663}