{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提出了利用熔盐换热系统回收利用铝电解余热的技术观点,并提出铝电解槽余热回收与氧化铝生产管道化熔出利用余热相结合的熔盐介质循环体系.系统地研究了换热系统与电解槽结构结合的问题,电解槽温度场优化的问题,换热介质的物理化学性质等问题.完成了2000A新型可换热铝电解槽的研制和试验工作,试验结果表明该电解槽可以平稳的运行,并可成功回收侧部散热量的80%,在回收热量的同时,还可以通过换热系统的运行,来人为控制电解槽的侧部结壳厚度,实现铝电解槽炉帮的可控制.","authors":[{"authorName":"","id":"4b47dc52-ae95-413e-a4ce-3e1e30e7b228","originalAuthorName":"王兆文"},{"authorName":"高炳亮","id":"556266be-6120-4567-8bbf-7f903067bf8d","originalAuthorName":"高炳亮"},{"authorName":"石忠宁","id":"04e48e44-e0e5-44bd-96b2-6c09528a2869","originalAuthorName":"石忠宁"},{"authorName":"胡宪伟","id":"87fb1500-4fee-4c34-a890-9d0b6d264f09","originalAuthorName":"胡宪伟"},{"authorName":"于亚鑫","id":"edf1a083-00e2-4326-b9d1-9218f63b8416","originalAuthorName":"于亚鑫"},{"authorName":"陈广华","id":"630e3b77-cdab-4f7e-832d-a54ee37484e7","originalAuthorName":"陈广华"},{"authorName":"超","id":"165a2b36-18dc-4276-82ae-23f421b6552c","originalAuthorName":"王超"},{"authorName":"陶举","id":"137db955-30f3-4747-b8f4-e6cd20288f91","originalAuthorName":"陶文举"}],"doi":"10.3969/j.issn.1671-6620.2010.z1.003","fpage":"8","id":"c6207229-298c-49a9-ac27-05ae2c75b7df","issue":"z1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"cd91aeff-1678-4707-bdb6-bfbfdf3c8e4f","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"clyyjxb2010z1003","title":"铝电解槽余热回收利用的基础研究","volume":"09","year":"2010"},{"abstractinfo":"通过分析所得的交流阻抗谱,探讨了采用交流阻抗技术使用连续变化电导池常数法测定溶液和熔盐电导率的合理实验条件.通过对交流阻抗等效电路进行分析,认为实验电路的交流阻抗过程是电化学极化与浓差极化共同控制的过程,对于溶液来说,扩散体现出Warburg扩散特性,而熔盐的扩散体现出Gerischer特性.采用边连续变化电导池常数公式进行电导率计算时,对应的电路电阻最好选择对所得的Nyquist图拟合分析所得的溶液/熔盐与电极及导线电阻之和.如果考虑拟合误差,也可以采用读取高频率时电路电阻的方法来进行计算.","authors":[{"authorName":"胡宪伟","id":"a799c7b9-adfb-45c9-a4e6-b76da177b933","originalAuthorName":"胡宪伟"},{"authorName":"","id":"10f2d657-fe62-4bc7-b841-19dcd9afb1de","originalAuthorName":"王兆文"},{"authorName":"路贵民","id":"3a0b796c-2c8c-47cd-a761-0c8f2bb6eeb1","originalAuthorName":"路贵民"},{"authorName":"石忠宁","id":"3ff17ca9-9a62-4440-a73d-536832d483b0","originalAuthorName":"石忠宁"},{"authorName":"曹晓舟","id":"6e53b11a-ab95-4610-b867-5ad88a0d9687","originalAuthorName":"曹晓舟"},{"authorName":"崔建忠","id":"92dbfb3c-4211-49c3-9916-6fb854e6654a","originalAuthorName":"崔建忠"},{"authorName":"赵兴亮","id":"5092a5a8-2a1a-40fb-abd3-0e07568acdea","originalAuthorName":"赵兴亮"}],"doi":"","fpage":"551","id":"60469c0e-8495-4339-9c22-ec53b2f19342","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"46eb6864-2204-4dbf-88d0-7d6bf7d6e8a1","keyword":"连续变化电导池常数法","originalKeyword":"连续变化电导池常数法"},{"id":"cbb8b34f-937f-4bad-9ee2-d06219e32d00","keyword":"电导率","originalKeyword":"电导率"},{"id":"f670efce-03e0-4e50-9b2f-1bd314e65d26","keyword":"等效电路","originalKeyword":"等效电路"}],"language":"zh","publisherId":"zgysjsxb200803029","title":"连续变化电导池常数法测定电导率的等效电路分析及应用","volume":"18","year":"2008"},{"abstractinfo":"报道了锂盐在铝电解中的作用.阐述了其提高熔体的电导率,降低电解质的熔点,减少铝的溶解损失,减小极化电压,降低电解质的蒸气压及延长阴极寿命等优点.提出锂盐与其它添加剂的有机结合,可获得更大经济效益和社会效益的构想.","authors":[{"authorName":"曹大力","id":"7d84701c-7f59-497c-83d5-296bdd681485","originalAuthorName":"曹大力"},{"authorName":"邱竹贤","id":"74af863c-d0a4-4bc2-b0bf-b90c0e108551","originalAuthorName":"邱竹贤"},{"authorName":"吉坤","id":"0a1e239a-7a6c-4a83-86c6-78a53de91858","originalAuthorName":"王吉坤"},{"authorName":"石忠宁","id":"693e0ee7-72b1-4ffa-9096-1f4e03f3bc9b","originalAuthorName":"石忠宁"},{"authorName":"阚红敏","id":"48dd6a1a-1d89-4fc9-8585-bb7f55ea2ba0","originalAuthorName":"阚红敏"},{"authorName":"班允刚","id":"89b231ac-9852-4b09-87f9-64ccba745086","originalAuthorName":"班允刚"},{"authorName":"","id":"6165cc1d-71b2-4f03-a52f-1ed4b9e8eaa9","originalAuthorName":"王兆文"}],"doi":"","fpage":"90","id":"c01f34e3-5870-46a5-afc3-6f07f61dde92","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3e0f0b35-4197-41dd-b4b9-7ac780546771","keyword":"铝电解","originalKeyword":"铝电解"},{"id":"0d4afd0e-4ceb-4d02-91e1-8eebda679b65","keyword":"锂盐(LiF/Li2CO3)","originalKeyword":"锂盐(LiF/Li2CO3)"},{"id":"cbf8bb58-91ee-4938-9246-c262592ecf79","keyword":"添加剂","originalKeyword":"添加剂"}],"language":"zh","publisherId":"cldb200608026","title":"锂盐在铝电解中的作用","volume":"20","year":"2006"},{"abstractinfo":"以月球资源原位利用为目的,研究了在冰晶石熔盐介质中铝热还原钛铁矿制备铝钛铁合金.热力学计算表明,在960℃,铝热还原钛铁矿的相关反应在热力学上可以自发进行.在组成(质量分数,下同)为47.14%NaF-42.86%AlF3-10%FeTiO3的960℃冰晶石介质中进行铝热还原,研究还原剂用量和还原时间对合金产物的影响.还原产物用XRF、XRD、SEM和EDS进行分析.结果表明,合金产物中有Al、Ti、Fe和少量Si,产物的主要物相是Al3Ti.随着铝用量的增加,合金产物中Ti的含量逐渐减少,而Fe的含量逐渐增加;随着反应时间的延长,产物中Al3Ti的含量增加.在冰晶石熔盐体系中进行铝热还原2h、还原剂用量为理论用量3倍时,铝中钛含量最高可达18.82%.低还原剂用量和较长还原时间在冰晶石熔盐介质中还原钛铁矿,可实现Ti/Fe分离;还原反应为原子态的铝还原溶解为离子态的Ti4+得到Al-Ti合金.","authors":[{"authorName":"石忠宁","id":"9c5ead08-2f2b-4f4b-b16b-3d5a06234d8c","originalAuthorName":"石忠宁"},{"authorName":"谢开钰","id":"710efd44-1548-451e-953c-6fad2f7b31b4","originalAuthorName":"谢开钰"},{"authorName":"关苹苹","id":"c9e752cb-9069-4c68-8d59-48e3ab00e88b","originalAuthorName":"关苹苹"},{"authorName":"刘爱民","id":"84339347-92b3-4ffb-bd3b-6c78d96f5604","originalAuthorName":"刘爱民"},{"authorName":"胡宪伟","id":"625c2629-0126-43c0-af0b-fb73175c3db5","originalAuthorName":"胡宪伟"},{"authorName":"高炳亮","id":"b899ab62-3a7f-4be4-b080-8f16f9e3330d","originalAuthorName":"高炳亮"},{"authorName":"","id":"2799b694-c739-43db-a66f-975c74386646","originalAuthorName":"王兆文"}],"doi":"","fpage":"1278","id":"8fa3a362-b2dd-41e2-a2c6-90415afb9d1a","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"50dfa283-984a-4a73-b389-e8fc2ee4206e","keyword":"铝热还原","originalKeyword":"铝热还原"},{"id":"be141729-b8d4-4c90-acee-6740dda2a9ee","keyword":"冰晶石熔盐","originalKeyword":"冰晶石熔盐"},{"id":"e4b4c55a-1713-4759-905a-b7ab357f7bbe","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"d0b60c30-bd79-455a-9be6-1bccbdd65f4c","keyword":"月球资源原位利用","originalKeyword":"月球资源原位利用"}],"language":"zh","publisherId":"xyjsclygc201605034","title":"冰晶石熔盐介质中铝热还原月壤模拟样钛铁矿","volume":"45","year":"2016"},{"abstractinfo":"研究了一种以单水氢氧化锂为原料制备高纯度氧化锂的新型真空热分解工艺.考察了坩埚材质对真空加热单水氢氧化锂制备氧化锂的影响及其反应机制,并探索了制备氧化锂的最佳条件.实验结果表明,坩埚材质对真空加热单水氢氧化锂的产物有显著影响,在锂化刚玉坩埚中能够获得高纯度的氧化锂;在石墨坩埚和镍坩埚中分别得到中间产物碳酸锂和无水氢氧化锂,延长950℃保温时间能得到纯度较低的氧化锂;在铁坩埚中不能得到氧化锂.提高温度及延长高温保温时间都能一定程度上提高锂化刚玉坩埚中产物氧化锂的纯度.采用新的真空热分解工艺在锂化刚玉坩埚中得到纯度高于98.9%的氧化锂.与传统氧化锂的制备方法相比,此新型真空热分解工艺采用的原料易取好保存,简化了氧化锂的制备流程,降低了生产成本,且操作简便.这对工业上低成本大量生产氧化锂具有重要意义.","authors":[{"authorName":"张世镖","id":"fff13cb4-8e91-494a-8b45-e890ae23cff4","originalAuthorName":"张世镖"},{"authorName":"高炳亮","id":"745c9354-db8d-4ff5-839e-49e0d88c66bb","originalAuthorName":"高炳亮"},{"authorName":"","id":"3334582d-7efa-40e3-94b8-d0c9a9e907c4","originalAuthorName":"王兆文"},{"authorName":"石忠宁","id":"4c678837-a19a-4a09-beca-f5bca950f4ae","originalAuthorName":"石忠宁"},{"authorName":"胡宪伟","id":"259ed2d1-7581-4bdc-bc0c-63c8eb73a8bf","originalAuthorName":"胡宪伟"}],"doi":"10.13373/j.cnki.cjrm.2015.09.007","fpage":"807","id":"10a7eb23-5747-4078-a054-14d85a4e75ab","issue":"9","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f90affd8-f2a4-4a28-8ffe-e4023f6c36c2","keyword":"氧化锂","originalKeyword":"氧化锂"},{"id":"9cfa0e8b-2147-4caf-8127-e61425776ca4","keyword":"单水氢氧化锂","originalKeyword":"单水氢氧化锂"},{"id":"d21fa905-593d-4702-9e21-71c698d2aa33","keyword":"真空热分解","originalKeyword":"真空热分解"},{"id":"3841fcc0-92c2-4eb8-860e-03881ad0ccc4","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"xyjs201509007","title":"单水氢氧化锂制备氧化锂的研究","volume":"39","year":"2015"},{"abstractinfo":"依据文献综合介绍了稀土对铝及铝合金的力学性能、热学性能、光学性能、电学性能、耐腐蚀性能和工艺性能的影响,探讨了稀土在铝及铝合金中净化、变质和合金化作用的微观机理,讨论了稀土铝合金发展中存在的问题.","authors":[{"authorName":"曹大力","id":"e88ab117-0e5c-455a-9db8-f3a4f93943c5","originalAuthorName":"曹大力"},{"authorName":"石忠宁","id":"7a8e515d-0add-4e96-b875-f583402a8ca6","originalAuthorName":"石忠宁"},{"authorName":"杨少华","id":"2c814afc-9344-4d96-a4e9-92c729723113","originalAuthorName":"杨少华"},{"authorName":"吉坤","id":"ad477db9-f2f4-4d35-b029-581492ec0df7","originalAuthorName":"王吉坤"},{"authorName":"","id":"2961a308-0d87-4be1-8ba8-4a07448a39bf","originalAuthorName":"王兆文"},{"authorName":"邱竹贤","id":"98059cd8-8879-4ebe-a361-866083ba835b","originalAuthorName":"邱竹贤"}],"doi":"10.3969/j.issn.1004-0277.2006.05.021","fpage":"88","id":"125ea4e7-f88d-44ad-8be1-287220037539","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"9cb4de67-4dc8-43f0-bb82-99aed5fd1d2a","keyword":"稀土铝合金","originalKeyword":"稀土铝合金"},{"id":"5db027c3-6112-40b5-a3d4-7b1ba1287ae4","keyword":"材料性能","originalKeyword":"材料性能"},{"id":"902bbb58-5b4d-45a0-ac3b-dca600c02009","keyword":"微观机理","originalKeyword":"微观机理"}],"language":"zh","publisherId":"xitu200605021","title":"稀土在铝及铝合金中的作用","volume":"27","year":"2006"},{"abstractinfo":"对我国伊川电解铝厂300 kA大型预焙槽进行大修时,采用了不同石墨质的碳阴极、振动成型TiB2涂层阴极和刷涂TiB2涂层阴极等新材料,通过研究电解槽启动后一段时间内不同阴极材料的炉底电压降、电阻随时间的变化关系和铝液中Ti含量的变化规律等,寻找综合性能较佳的阴极材料,使其可达到降低炉底压降,形成完好的炉帮,从而有效地提高槽寿命的目的.研究发现TiB2质量分数为30%的振动成型阴极碳块的阴极电压降和铝中Ti的质量分数均较低,分别为261mV和0.002 5%;认为采用全石墨化阴极和振动成型硼化钛涂层阴极可以节省电能降耗.","authors":[{"authorName":"任必军","id":"527450ac-b353-4bf1-9df7-ae8760932a80","originalAuthorName":"任必军"},{"authorName":"石忠宁","id":"763f6f54-1dc2-400d-9306-22b52efebaa4","originalAuthorName":"石忠宁"},{"authorName":"班允刚","id":"cd4df7d6-00df-48ea-9f93-fbb4cd710abd","originalAuthorName":"班允刚"},{"authorName":"","id":"3c49aaa2-68b2-4641-a716-d88e187d24be","originalAuthorName":"王兆文"}],"doi":"10.3969/j.issn.1671-6620.2006.04.006","fpage":"263","id":"20a75ce9-2fdd-467a-bb0f-d64851e172b2","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"55a057c3-6b63-4661-9a25-040821bfa6dd","keyword":"铝电解槽","originalKeyword":"铝电解槽"},{"id":"6e86f821-1085-4573-9a7f-fb4c1d0e8cc1","keyword":"阴极","originalKeyword":"阴极"},{"id":"6a27c2d0-be5c-4e31-b939-0eb098f79c11","keyword":"TiB2涂层","originalKeyword":"TiB2涂层"},{"id":"278f21ce-4d07-493d-8a0e-40c890010349","keyword":"新材料","originalKeyword":"新材料"}],"language":"zh","publisherId":"clyyjxb200604006","title":"300 kA大型电解槽阴极新材料的应用","volume":"5","year":"2006"},{"abstractinfo":"研究了在铝电解质体系中添加Er2O3制备Al-Er中间合金的工艺条件. 实验结果表明: Al-Er中间合金的Er含量随着阴极电流密度的增加、电解时间的延长而增加. 当Er2O3加入量为10%, 阴极电流密度为0.75 A*cm-2, 电解时间为2 h时, Er在Al-Er中间合金中的含量达到了2.3%. 经SEM研究证实, Er在Al-Er中间合金中的分布是均匀的. ","authors":[{"authorName":"付静","id":"eb954558-56a1-49a4-924b-446fcd26ceb7","originalAuthorName":"付静"},{"authorName":"吴远","id":"6840c0b5-9c35-463f-9189-1745a16a40b1","originalAuthorName":"吴文远"},{"authorName":"涂赣峰","id":"6da1f7b0-fb66-4421-84a8-a96ee89863f0","originalAuthorName":"涂赣峰"},{"authorName":"","id":"b40c42a2-0794-486c-bd76-deac8c878b6a","originalAuthorName":"王兆文"},{"authorName":"杨红晓","id":"1d58a2c9-1f52-4cc0-a409-e42477e1b68f","originalAuthorName":"杨红晓"}],"doi":"10.3969/j.issn.0258-7076.2003.06.014","fpage":"718","id":"38145417-4825-4d63-8cd3-9c1baee0f698","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a49cccca-7d43-4fdb-a268-72ec756ec7cc","keyword":"熔盐电解","originalKeyword":"熔盐电解"},{"id":"6c2511a9-4d0e-4f09-a9f3-1985a18a5c37","keyword":"Al-Er合金","originalKeyword":"Al-Er合金"},{"id":"60af7802-0f58-43cf-b5e1-f85169cd5d82","keyword":"氧化铒","originalKeyword":"氧化铒"}],"language":"zh","publisherId":"xyjs200306014","title":"熔盐电解法制取铝铒合金的研究","volume":"27","year":"2003"},{"abstractinfo":"研究了在二元二(三氟甲基磺酸酰)亚胺碱金属盐LiTFSI-CsTFSI的共晶熔体(共晶点组成:摩尔比为0.07:0.93;共晶点温度为112℃)中电化学沉积难熔金属钼.结果表明,选择MOCl3作为钼离子源,分别于200和150℃在镍基体上电沉积得到金属钼.循环伏安法结合SEM和XPS分析表明,在1.4V vs.Li+/Li处的恒电位电解所得到的沉积物为非晶态的金属钼.","authors":[{"authorName":"高炳亮","id":"0380e4eb-ae95-4d07-bb6b-bd4f7a99317c","originalAuthorName":"高炳亮"},{"authorName":"","id":"4fa117a9-f734-4681-bbd5-c261bd4ce45b","originalAuthorName":"王兆文"},{"authorName":"野平俊之","id":"b278a838-beff-4d3d-833d-8919c63fe87a","originalAuthorName":"野平俊之"},{"authorName":"萩原理加","id":"fa603d60-1771-44af-98af-bb14e3d818f6","originalAuthorName":"萩原理加"}],"doi":"","fpage":"1292","id":"41c8a68b-6217-4e5a-9041-06e060c0c84e","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"17c6c41b-5ac9-4c77-b795-0085d88bbfd9","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"149eb275-7176-482c-bcd1-4bbede1134ce","keyword":"钼","originalKeyword":"钼"},{"id":"017c3d2c-14f0-4f9c-8262-d1017684bdf3","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"8337afca-69b2-49fa-ac85-ff1fed6cbbab","keyword":"三氯化钥","originalKeyword":"三氯化钥"}],"language":"zh","publisherId":"xyjsclygc201107036","title":"在低温熔盐LiTFSI-CsTFSI中电沉积钼","volume":"40","year":"2011"},{"abstractinfo":"本文介绍了热还原法制备金属钛的工艺,包括Kroll法、镁还原低价卤化物、PRP法及Hunter法及电解法,包括电解TiCl4法、FFC剑桥工艺、EMR/MSE等,分析了各种方法的机理及特点.并且认为以TiCl4为原料制备钛工艺降低成本的空间很小;如能生产出低成本的TiCl2,钛成本高的问题将很快得以解决;从熔盐中直接电解TiO2制备金属钛,是低成本金属钛制备新工艺的发展方向.","authors":[{"authorName":"曹大力","id":"3b2cc6fc-c802-4a45-8096-7c82267a4c2b","originalAuthorName":"曹大力"},{"authorName":"吉坤","id":"a47f64f7-3322-48f4-8bfe-d6e57536a357","originalAuthorName":"王吉坤"},{"authorName":"邱竹贤","id":"ec098d3e-0be6-4dcc-a567-4ce635d6b7c1","originalAuthorName":"邱竹贤"},{"authorName":"石忠宁","id":"212aaaba-8c21-4ad1-84eb-2aee95225703","originalAuthorName":"石忠宁"},{"authorName":"","id":"bf86fc3d-3823-4ac9-ac48-d5c1bfb5ecaa","originalAuthorName":"王兆文"},{"authorName":"郭思辰","id":"f60bece6-bd73-410c-879b-bcdae5438959","originalAuthorName":"郭思辰"}],"doi":"10.3969/j.issn.1009-9964.2008.04.003","fpage":"9","id":"77dccf26-acc3-4dcd-8c23-1c7e840f3c80","issue":"4","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"701a3ddb-5137-4529-9203-6a37961b3ff8","keyword":"金属钛","originalKeyword":"金属钛"},{"id":"0c189c5e-6afd-4c61-afe7-a6d466714b46","keyword":"热还原","originalKeyword":"热还原"},{"id":"29762d15-ed98-434a-9aeb-bfc40a9d0deb","keyword":"电解","originalKeyword":"电解"},{"id":"dc52f409-c4fe-4c20-b893-7bb65b6bd708","keyword":"TiCl4","originalKeyword":"TiCl4"},{"id":"98ea85ad-ed6c-4c46-b9d8-47727c3f86fe","keyword":"TiCl2","originalKeyword":"TiCl2"},{"id":"15d91f97-32d1-4d6f-8fe3-e136298cc18b","keyword":"TiO2","originalKeyword":"TiO2"}],"language":"zh","publisherId":"tgyjz200804003","title":"金属钛制备工艺研究进展","volume":"25","year":"2008"}],"totalpage":27,"totalrecord":264}