{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了微波辅助萃取-固相微萃取-气相色谱(MAE-SPME-GC)同时测定茶叶中六六六(α-BHC,β-BHC,γ-BHC,δ-BHC 4种异构体)、滴滴涕类(DDD,DDE,o,p′-DDT,p,p′-DDT)、氯氰菊酯(cypermethrin)和氰戊菊酯(fenvalerate)等10种农药残留的方法.采用外标法定量,除氰戊菊酯外,农药的质量浓度与其色谱峰面积在一定范围内有较好的线性关系,相关系数为0.970 5~0.998 4.10种组分的加标回收率为64%~121%,相对标准偏差为10.4%~22.9%,检测限为1~50 ng/L.应用该方法测定了市场上3种茶叶中上述农药残留的含量.","authors":[{"authorName":"袁宁","id":"c0910437-7f8d-4cd7-beea-0b312f510738","originalAuthorName":"袁宁"},{"authorName":"余彬彬","id":"b5668494-4aeb-4ff3-b820-dd0f04838495","originalAuthorName":"余彬彬"},{"authorName":"","id":"3286693f-caab-4628-b3af-9cc9ca68d0bd","originalAuthorName":"张茂升"},{"authorName":"曾景斌","id":"1cf1bef7-de9e-4da0-85d9-5f8ab9602e76","originalAuthorName":"曾景斌"},{"authorName":"陈曦","id":"8570b039-7351-4753-b03b-d286b1500ffc","originalAuthorName":"陈曦"}],"doi":"10.3321/j.issn:1000-8713.2006.06.023","fpage":"636","id":"f49d27a8-d9b6-410d-8c9b-e45c3e61a0c4","issue":"6","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"c63059ae-4433-4f2d-9f8e-f419cc9378f2","keyword":"微波辅助萃取","originalKeyword":"微波辅助萃取"},{"id":"d2df76af-c5dd-4509-bb90-734aa7a6d4b5","keyword":"固相微萃取","originalKeyword":"固相微萃取"},{"id":"62c8e6d2-6be1-4232-a866-c20978605055","keyword":"气相色谱","originalKeyword":"气相色谱"},{"id":"c662fd78-58a9-41db-bad2-8b1c90c2d5e8","keyword":"残留测定","originalKeyword":"残留测定"},{"id":"fe2f8f3d-0701-4496-9e06-a3aa95bc020e","keyword":"有机氯农药","originalKeyword":"有机氯农药"},{"id":"2d598a8c-dec3-4591-a4ad-191a4a7667e6","keyword":"拟除虫菊酯农药","originalKeyword":"拟除虫菊酯农药"},{"id":"cd55a499-8524-4c62-b137-68f67b29ff85","keyword":"茶叶","originalKeyword":"茶叶"}],"language":"zh","publisherId":"sp200606023","title":"微波辅助萃取-固相微萃取-气相色谱法同时测定茶叶中的有机氯和拟除虫菊酯农药残留","volume":"24","year":"2006"},{"abstractinfo":"以0.45 μm混合纤维素酯微孔膜为支载膜,丙烯酰胺为功能单体,N,N′-亚甲基双丙烯酰胺为交联剂,通过原位聚合法制备得到孔雀石绿分子印迹膜,并研究了其对模板分子和类似物的渗透性能. 以分子印迹膜作为渗透膜,单一渗透实验中,13 h后MG的渗透量达到0.118×10~(-3) g/cm~2,而相同时间内甲基紫、甲酚红和溴百里酚蓝的渗透量分别为0.064×10~(-3)、0.057×10~(-3)和0.044×10~(-3) g/cm~2,且在竞争渗透中孔雀石绿的渗透速率没有发生明显变化,而甲基紫的渗透速率却显著下降. 实验表明,分子印迹膜对模板分子孔雀石绿表现出良好的渗透选择性,且在与类似物甲基紫的竞争渗透中具有优先渗透能力.","authors":[{"authorName":"","id":"3a5fd5e6-b7a7-449f-b4a2-f7f3a2c3e432","originalAuthorName":"张茂升"},{"authorName":"黄佳蓉","id":"52bf7a7f-f8c8-42c3-b4ad-f3bdc689539a","originalAuthorName":"黄佳蓉"},{"authorName":"郑向华","id":"d61c8f80-63ff-4d84-bf6d-c31584215df6","originalAuthorName":"郑向华"},{"authorName":"何建锋","id":"dc216e76-37d8-48a9-a2a9-e26c3cf60022","originalAuthorName":"何建锋"}],"doi":"10.3969/j.issn.1000-0518.2010.01.021","fpage":"107","id":"3a793baf-6c6f-4d34-89af-5c13799875e7","issue":"1","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"85dd8eca-3cee-42b8-969b-6c426f7dcbb2","keyword":"分子印迹技术","originalKeyword":"分子印迹技术"},{"id":"73a1e598-34e7-4638-9150-dfe93569b15d","keyword":"表面印迹法","originalKeyword":"表面印迹法"},{"id":"b995c9b4-47b5-4789-89ed-b9919770c3f6","keyword":"孔雀石绿","originalKeyword":"孔雀石绿"},{"id":"a4ab23c3-2815-44ab-9e17-3bb3eb3f3541","keyword":"渗透","originalKeyword":"渗透"}],"language":"zh","publisherId":"yyhx201001021","title":"孔雀石绿分子印迹膜的制备和渗透性","volume":"27","year":"2010"},{"abstractinfo":"通过在[Bmim]PF6离子液体-水双相体系中,以对苯二酚为模板分子,甲基丙烯酸为功能单体,二甲基丙烯酸乙二醇脂为交联剂,采用悬浮聚合法制备得到对苯二酚印迹聚合物微球(MIMs-IL),并通过FTIR等测试技术对MIMs-IL进行了表征. 对不同离子液体进行了选择,[Bmim]PF6介质中制备的MIMs-IL的识别性能最好. 与从氯仿介质中制备的印迹聚合物微球(MIMs-Or)相比较,MIMs-IL的产率为70.8%,明显高于MIMs-Or的48.7%. 采用静态吸附法考察其印迹识别能力的结果表明,MIMs-IL对水中的对苯二酚的识别能力大大强于MIMs-Or. 对MIMs-IL识别吸附的热力学和动力学研究结果表明,12 h时MIMs-IL及其非印迹聚合物微球(nMIMs-IL)均达到各自饱和吸附量,对于0.50 g/L对苯二酚水溶液,MIMs-IL的饱和吸附量是nMIMs-IL的2.67倍.","authors":[{"authorName":"","id":"bf51febb-50e9-423c-904c-7d797092abac","originalAuthorName":"张茂升"},{"authorName":"黄佳蓉","id":"8ffe0a0f-a8ec-4d28-b55b-2f6eabd769fd","originalAuthorName":"黄佳蓉"},{"authorName":"叶苹","id":"2438c84a-e6cf-44e5-9cc8-038ac2d51681","originalAuthorName":"叶苹"},{"authorName":"陈丽珠","id":"48e3d0e8-e63d-48d9-90c3-fcf067af94b5","originalAuthorName":"陈丽珠"}],"doi":"10.3724/SP.J.1095.2010.90470","fpage":"518","id":"e64a4752-5bbb-45c0-bb7e-50b9f3284c67","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"f3195471-e902-4a9f-aae8-335c866c500b","keyword":"分子印迹技术","originalKeyword":"分子印迹技术"},{"id":"f1b8c29d-71d2-4b66-978e-35caf5e008d4","keyword":"悬浮聚合法","originalKeyword":"悬浮聚合法"},{"id":"da984b8e-5124-41b1-a3f8-b40329cbdd79","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"f42fdc64-c5af-490b-88d2-45bebe1735af","keyword":"对苯二酚","originalKeyword":"对苯二酚"}],"language":"zh","publisherId":"yyhx201005005","title":"离子液体-水双相体系悬浮聚合法制备对苯二酚分子印迹聚合物微球","volume":"27","year":"2010"},{"abstractinfo":"在对轧制时钢管的温降原因进行分析的基础上,给出一种定减温降计算模型,该模型考虑了辐射、接触传导、内部传导对温度的影响.通过对轧制实验测定得到钢管的温降数据与此模型实例计算的结果进行对比分析,表明该模型比较准确,能够满足生产实际的要求,可用于自动控制系统中定减温降的计算,从而为控制系统比较准确地对轧机进行设定及调整提供依据.","authors":[{"authorName":"付国忠","id":"2df6a851-8f47-4b56-8f72-ddb7bbbcfe8c","originalAuthorName":"付国忠"},{"authorName":"刘建平","id":"7bbce9ac-9a32-45eb-96fd-189eee9a7fcf","originalAuthorName":"刘建平"},{"authorName":"赵晓峰","id":"447ac541-0f77-4dc8-b74d-90d05019a5dc","originalAuthorName":"赵晓峰"},{"authorName":"刘建明","id":"dab886da-88c3-485b-acd8-36bdef7ca181","originalAuthorName":"刘建明"},{"authorName":"吕庆功","id":"ca75c975-aa2d-40d9-a1bc-e6c2a6290dd3","originalAuthorName":"吕庆功"},{"authorName":"彭龙洲","id":"191fb78f-9fa7-4ff8-bd3d-f5d577b2254b","originalAuthorName":"彭龙洲"}],"doi":"","fpage":"51","id":"f9f1b624-57cd-4daa-8c3b-87273c5da7af","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"86dbadc0-1405-4493-8908-e33b69ac127a","keyword":"定减","originalKeyword":"定张减"},{"id":"9e7152eb-09a1-44ea-a2de-6bbe76d243e5","keyword":"温降","originalKeyword":"温降"},{"id":"5b41b920-ede8-4551-8e68-3e12ea48cca0","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gt200412013","title":"定减温降计算模型","volume":"39","year":"2004"},{"abstractinfo":"针对一起运行18a的耐线夹处导线失效事故,采用宏观检查、扫描电镜、力学性能测试及金相组织检验等分析手段,由失效线夹特征及绞线断口形貌、组织性能劣化特点研究了其失效原因和机理.结果表明,耐线夹铝管一侧压痕明显,另一侧积垢;外层铝股表面有大量腐蚀坑;铝股及钢芯的断面收缩率增加10%以上;铝股、钢芯断口纵向金相纤维特征弱化,钢芯断口颈缩处纤维特征消失.该次断线主要是线夹压接不良致管内钢芯铝绞线与线夹接触面腐蚀,灰尘、腐蚀产物在管内结垢,发热量增加,绞线温,材质劣化而引起的.","authors":[{"authorName":"王伟","id":"4f49802e-1113-42d0-a901-ff9452c7f097","originalAuthorName":"王伟"},{"authorName":"朱成丽","id":"9aacffb1-bd23-488a-a512-5d3fa95bef13","originalAuthorName":"朱成丽"},{"authorName":"吴洪亮","id":"d1c38f09-360a-46a3-941a-210fa9eeb0af","originalAuthorName":"吴洪亮"},{"authorName":"李晓红","id":"a4862241-acb3-4060-ae57-14b879598d2b","originalAuthorName":"李晓红"}],"doi":"","fpage":"297","id":"7dedcd6a-1a6f-440e-b015-c3e189c7a387","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"193ebe28-5731-4e96-968b-1b6368f9b07d","keyword":"耐线夹","originalKeyword":"耐张线夹"},{"id":"48acf1f4-acaa-4b66-9246-0c38cf2f9758","keyword":"断线","originalKeyword":"断线"},{"id":"3824b5a4-0214-4fda-8b5a-50c6afd68606","keyword":"压接不良","originalKeyword":"压接不良"},{"id":"3d3c9254-5ef2-42a9-bba0-355c7067de3a","keyword":"蚀坑","originalKeyword":"蚀坑"},{"id":"61d40d06-fbd8-4e2a-a1e0-9b85b880079f","keyword":"材质劣化","originalKeyword":"材质劣化"}],"language":"zh","publisherId":"fsyfh201403023","title":"耐线夹内钢芯铝绞线断裂原因及断口特征","volume":"35","year":"2014"},{"abstractinfo":"在室温环境下(25℃)对某ZrTiNiCuBe块体非晶合金材料进行不同应变率条件下的静态与动态压缩实验。并采用扫描电镜技术(SEM)对试样断口、侧面等进行表征,对比静、动态条件下的应力?应变曲线形貌的差异。结果表明:静态压缩时为剪切断裂,微观形貌上出现脉状花样与剪切带;剪切带诱发裂纹的形成,裂纹随着剪切带扩展。动态压缩时为脆性解理断裂,断面粗糙且发现大量熔滴;断口处出现解理台阶,塑性阶段出现明显的锯齿流变现象。从能量守恒定律出发,利用变形过程中弹性应变能的变化规律推测剪切变形区域内温的变化规律,温的变化规律揭示锯齿流变与试样的断裂机制。","authors":[{"authorName":"潘念侨","id":"5b38f5be-5f4e-41aa-b510-36e57ba618d2","originalAuthorName":"潘念侨"},{"authorName":"杜忠华","id":"cd695ea3-bade-42db-9f6e-6c432e1a7d3e","originalAuthorName":"杜忠华"},{"authorName":"朱正旺","id":"c1a5bc5e-fb7c-4399-8a83-6f34fba63d3d","originalAuthorName":"朱正旺"},{"authorName":"雷晓云","id":"327e07fb-9b33-4b00-9ced-c5c34927d4bc","originalAuthorName":"雷晓云"},{"authorName":"徐立志","id":"b8177a5b-07d8-49b0-8d22-9311a16a5ee3","originalAuthorName":"徐立志"}],"doi":"","fpage":"973","id":"466be343-8bbf-408a-90b9-b8294e2752a8","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"951c1658-d0f2-4ec4-a9fd-de12a3f9eb60","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"},{"id":"8f11642d-0810-490c-a98f-8f835a0e09ea","keyword":"锯齿流变","originalKeyword":"锯齿流变"},{"id":"5eaee4e7-db28-41d9-a48b-df858f426d57","keyword":"绝热温","originalKeyword":"绝热温升"},{"id":"05258f6f-61e1-47b4-b597-143fc2a079b4","keyword":"弹性应变能","originalKeyword":"弹性应变能"}],"language":"zh","publisherId":"zgysjsxb201605004","title":"ZrTiNiCuBe块体非晶合金剪切带内温与断裂温","volume":"26","year":"2016"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温的新方法.由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热.线材温的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线).道次温升为变形区内全部热线温的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温计算公式.对φ6.5 mm线材精轧进行了实际温计算与测量,结果表明:计算的理论温略低于实际测量温,线材精轧入口温度越低,出口累计温越大.","authors":[{"authorName":"赵德文","id":"2afae748-c817-41eb-abd9-0c60c80948bf","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"cf258491-da76-4032-8c9d-b6d028a0f8de","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"a713a461-b476-4c21-b495-63b958cbea11","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"090f2fa2-2bd4-46e1-b009-1a6bc79afef6","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"bc0894fa-95f3-48e6-a949-979e7f92b25f","originalAuthorName":"王国栋"}],"doi":"","fpage":"42","id":"282c0d40-0e9d-4bb6-a305-b0b8b431b0a2","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"73b2ee34-cb3f-45d8-beea-a24fbceb3479","keyword":"热线","originalKeyword":"热线"},{"id":"78166d07-9181-448c-af23-05d74750daa7","keyword":"速度不连续线","originalKeyword":"速度不连续线"},{"id":"fd8099f8-a417-4cf2-a779-3802946658a0","keyword":"剪切功率","originalKeyword":"剪切功率"},{"id":"ff96e6c2-69d4-4a42-ad89-e7ff08768780","keyword":"温","originalKeyword":"温升"},{"id":"5ff1c559-ea8d-4fda-8d93-7795abf41c7b","keyword":"高速线材轧制","originalKeyword":"高速线材轧制"}],"language":"zh","publisherId":"gt200610011","title":"热线理论计算线材精轧机组的温","volume":"41","year":"2006"},{"abstractinfo":"基于热线理论提出计算高速线材轧制温的新方法。由于线材精轧轧制速度快,散热条件差,可认为轧制过程是绝热的,线材轧制外功几乎全部转换为热。线材温的热量全部来自于变形区内的速度不连续线所做的剪切功率,称此速度不连续线为热量分布线(热线)。道次温升为变形区内全部热线温的总和,在假定道次变形中椭圆长轴或短轴不变条件下推导出高速线材精轧机组温计算公式。对6.5 mm线材精轧进行了实际温计算与测量,结果表明:计算的理论温略低于实际测量温,线材精轧入口温度越低,出口累计温越大。","authors":[{"authorName":"赵德文","id":"87a7f2a3-97a2-4a8a-83e0-4cb0d504e4a3","originalAuthorName":"赵德文"},{"authorName":"白雪峰","id":"775ef5d6-ca1e-4614-b4ad-23f5d4403e09","originalAuthorName":"白雪峰"},{"authorName":"王晓文","id":"bf89b772-19cc-4e9a-88bd-3e99f0910dc7","originalAuthorName":"王晓文"},{"authorName":"刘相华","id":"784fc253-a37f-4a4f-be93-dfd36fa1b5e3","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"0209b175-ee4f-45f6-97a8-b7c726827c0e","originalAuthorName":"王国栋"}],"categoryName":"|","doi":"","fpage":"42","id":"8e8f140d-f744-4883-bccc-e3a7cc615124","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4a4020e0-95d5-4c73-b9b4-96b1daf408bc","keyword":"热线;速度不连续线;剪切功率;温;高速线材轧制","originalKeyword":"热线;速度不连续线;剪切功率;温升;高速线材轧制"}],"language":"zh","publisherId":"0449-749X_2006_10_1","title":"热线理论计算线材精轧机组的温","volume":"41","year":"2006"},{"abstractinfo":"用SEM、TEM和XRD为主要分析手段比较研究了二铁在420℃和490℃加压炭化产物的组成与结构,结果表明:二铁在420℃的炭化产物组成为α-Fe,Fe3C和Fe-O,而490℃的炭化产物主要由Fe2.5C构成,说明温度的提高促使二铁向生成碳化物的方向发展.TEM测试表明产物Fe/C粒子呈现纳米级分散,说明通过控制二铁的热解温度可以由此制备具有不同组成的纳米Fe/C材料.","authors":[{"authorName":"宋怀河","id":"04b4700e-20cc-4aec-9919-e9b7f62dab9a","originalAuthorName":"宋怀河"},{"authorName":"陈晓红","id":"8fc65cf5-d417-4130-8544-c1368bb50262","originalAuthorName":"陈晓红"},{"authorName":"周成","id":"183fcc97-48b3-4c31-aade-546202b89512","originalAuthorName":"周成"}],"doi":"10.3969/j.issn.1007-8827.2002.01.003","fpage":"10","id":"56cc9da5-c7c0-4cec-a99b-1dd47908d091","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"2bd208c2-68d8-48cb-96b8-f65da65e0291","keyword":"二铁","originalKeyword":"二茂铁"},{"id":"18c5285c-7c6a-4044-891d-7e27a6d7d231","keyword":"炭化","originalKeyword":"炭化"},{"id":"753c36eb-4715-4cf0-b8f4-e5649fefaee3","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"}],"language":"zh","publisherId":"xxtcl200201003","title":"二铁加压炭化的研究","volume":"17","year":"2002"},{"abstractinfo":"通过对高压输电用耐线夹及夹持导线的宏观形貌、化学成分、腐蚀产物进行分析,探讨了该线夹腐蚀失效的原因.结果表明:该线夹在压接时即存在铝线断股现象,服役过程中使酸性雨水更易进入到压接管内部,对线夹与钢芯铝绞线结合面进行腐蚀生成腐蚀产物,导致耐线夹电阻增大;随着腐蚀的进行,线夹电阻不断增大,其温度也随之升高;当温度超过临界温度时,热平衡状态被打破,最终线夹过热,导致高温烧损失效;应加强线夹压接管位置的红外测温监控,及时更换温度明显异常的压接管.","authors":[{"authorName":"王若民","id":"67613948-e11f-48e5-825a-945647e34637","originalAuthorName":"王若民"},{"authorName":"詹马骥","id":"c5bfcec7-5a00-4e3d-b8c3-cc8ae36b1c5e","originalAuthorName":"詹马骥"},{"authorName":"季坤","id":"fad04bbc-1535-4f0d-b2d0-e0a6c3cd18b9","originalAuthorName":"季坤"},{"authorName":"严波","id":"5762aad4-1316-4f1b-a398-6bef540edc39","originalAuthorName":"严波"},{"authorName":"王夫成","id":"293d7a45-367c-4e72-b1e8-54671748e326","originalAuthorName":"王夫成"},{"authorName":"杜晓东","id":"34fa50d8-c180-4b94-bef4-334bb0b32a93","originalAuthorName":"杜晓东"}],"doi":"10.11973/jxgccl201703023","fpage":"112","id":"70c96a82-1183-4792-9903-a2d3f429c779","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ba9620cc-12e4-4c4a-8ed2-dabf99baee9b","keyword":"耐线夹","originalKeyword":"耐张线夹"},{"id":"e9262adb-ad1f-42ae-a53f-f8cf601c190c","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"b1c65b70-8df7-4c01-b691-fbe881df0505","keyword":"热击穿","originalKeyword":"热击穿"},{"id":"08076d01-a062-4829-9d0a-13eb956fbedd","keyword":"钢芯铝绞线","originalKeyword":"钢芯铝绞线"}],"language":"zh","publisherId":"jxgccl201703024","title":"高压输电用耐线夹失效的原因","volume":"41","year":"2017"}],"totalpage":125,"totalrecord":1245}