{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"燃烧法是制备氧化物纳米材料的一种新方法,其中,气相燃烧法、燃烧火焰-化学气相凝聚法已经实现了工业化生产;而一些新的工艺方法,如低温燃烧合成法、喷雾燃烧法、电控火焰合成法在制备纳米材料上也各有优缺点;燃烧法与其他技术的结合也在研究开发阶段.详细阐述了燃烧法的最新研究进展.","authors":[{"authorName":"程永亮","id":"89ca1809-ab52-48c9-8828-81a5222df0e8","originalAuthorName":"程永亮"},{"authorName":"宋武林","id":"b693f216-6501-4c28-bec6-c57247af047d","originalAuthorName":"宋武林"},{"authorName":"谢长生","id":"e57889c4-9e68-475d-abfa-32a083cfb164","originalAuthorName":"谢长生"}],"doi":"","fpage":"70","id":"29ed4e90-a9c2-4210-8946-7b0830daa691","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"97fd82e1-d7fd-4d4f-a18a-3f1457b360bc","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"c8fbd1ff-add5-499a-ab2e-3f8dcbd2725b","keyword":"氧化物","originalKeyword":"氧化物"},{"id":"645abe79-aa48-48cf-8197-b88d28e1cdcb","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"68bb2999-23f6-4c67-a480-f080399fce0e","keyword":"气相燃烧","originalKeyword":"气相燃烧"}],"language":"zh","publisherId":"cldb200307021","title":"燃烧法制备氧化物纳米材料的研究进展","volume":"17","year":"2003"},{"abstractinfo":"利用多重射流氢氧焰燃烧反应器,通过控制进料方式,以TiCl4和SiCl4为原料合成了具有典型核壳结构的纳米TiO2/SiO2复合颗粒,并分析了氢氧焰燃烧合成过程中核壳结构的形成机理.在纳米TiO2/SiO2复合颗粒中,无定形的SiO2均匀地包覆在晶态TiO2颗粒表面形成核壳结构,引入SiO2不但有效抑制TiO2晶粒的生长,而且抑制了锐钛相向金红石相的转变.在TiCl4和SiCl4次序进料时,TiCl4优先反应并通过成核生长生成TiO2纳米颗粒,SiCl4反应生成的SiO2通过在TiO2颗粒表面非均相成核生长,形成核壳结构的纳米复合颗粒.","authors":[{"authorName":"胡彦杰","id":"291e2704-9c60-4e65-9053-b90bead0ddb0","originalAuthorName":"胡彦杰"},{"authorName":"李春忠","id":"50e37b41-fdfe-477b-993b-97e0a9d37ce2","originalAuthorName":"李春忠"},{"authorName":"丛德滋","id":"757c9d53-2413-4caf-969c-f9555c32122a","originalAuthorName":"丛德滋"},{"authorName":"姜海波","id":"82524dd8-fbec-43cf-a8e6-c49aa056f260","originalAuthorName":"姜海波"},{"authorName":"赵尹","id":"aeee1424-4136-4edf-b73c-4a146bfcfad1","originalAuthorName":"赵尹"}],"doi":"10.3321/j.issn:1000-324X.2007.02.003","fpage":"205","id":"6a54fbd2-9728-4e6d-ae9b-c0d85085f2b8","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"774f767f-a239-4cc8-8051-761f338fd60a","keyword":"氢氧焰","originalKeyword":"氢氧焰"},{"id":"c40babdf-3c5a-4766-bdc0-70850d6606a4","keyword":"气相燃烧","originalKeyword":"气相燃烧"},{"id":"1c658a9e-0084-4f5c-8410-d9e0b00ccca6","keyword":"核壳结构","originalKeyword":"核壳结构"},{"id":"893b94ed-ca40-42a8-90e9-28f5fe65d261","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"811bfec3-2680-4ce3-be16-b9f5f407d25a","keyword":"SiO2","originalKeyword":"SiO2"}],"language":"zh","publisherId":"wjclxb200702003","title":"氢氧焰燃烧合成核壳结构纳米TiO2/SiO2复合颗粒及机理分析","volume":"22","year":"2007"},{"abstractinfo":"根据机械合金化和界面固相扩散反应的基本原理,开创性地提出了机械碾压法加化学镀配料加氢化燃烧合成的三步合成工艺,制备出高容量的Mg-Ni储氢合金.研究表明,气相燃烧过程中的温度、压力及保温时间对燃烧产物的组成有较大的影响,通过对反应过程的分析得出了合成Mg-Ni合金箔的反应机理.热分析测试表明所得Mg-Ni合金箔在220℃放氢,放氢量为2.6wt%.","authors":[{"authorName":"贾志华","id":"668c48c0-4b88-45a9-b079-73a2f7cc1c41","originalAuthorName":"贾志华"},{"authorName":"王玉平","id":"49c7a225-e77f-409e-9867-eaaa9d6e0a0c","originalAuthorName":"王玉平"},{"authorName":"刘文斌","id":"39f54b00-a748-4efa-99c3-40145aa83c3f","originalAuthorName":"刘文斌"}],"doi":"","fpage":"121","id":"024db37d-5420-423f-bbaa-03f951748e0d","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3e06c888-de3d-4cd4-94d5-0764198adb53","keyword":"储氢","originalKeyword":"储氢"},{"id":"687c8018-8d06-4811-a4e0-38382b0c09f2","keyword":"气相燃烧","originalKeyword":"气相燃烧"},{"id":"1b51bca7-17c0-47b2-bd9f-2ac8da4ec039","keyword":"Mg-Ni合金","originalKeyword":"Mg-Ni合金"}],"language":"zh","publisherId":"cldb200510032","title":"Mg-Ni储氢合金箔的制备及储氢性能研究","volume":"19","year":"2005"},{"abstractinfo":"采用TTM法与型线定点法相结合的方式生成带涡流器环形燃烧室贴体网格,在任意曲线坐标系中对其三维两相反应流场进行数值模拟,采用的紊流、燃烧以及辐射模型分别为:标准k-ε方程,EBU-Arrhenius公式,六通量热辐射模型等.在同位网格系下气相采用SIMPLE算法求解,气液两相流动用PSIC法模拟.通过对两种燃烧室的计算结果与实验值比较表明本计算方法合理,所得的计算结果可为环形燃烧室的优化设计提供指导数据.","authors":[{"authorName":"蔡文祥","id":"39ef9afd-5cc7-4f2d-9eda-b550f8a887cf","originalAuthorName":"蔡文祥"},{"authorName":"赵坚行","id":"e7b3e1e7-6c58-43a7-a835-130c3c10a29d","originalAuthorName":"赵坚行"},{"authorName":"张靖周","id":"c1171029-70bc-4488-9443-4bf169568039","originalAuthorName":"张靖周"}],"doi":"","fpage":"179","id":"f2ace13b-a829-4e9f-8ed0-40101f73f863","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"770b907e-3888-4a71-bbf4-c756c721a24e","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"7950cce6-a0d4-4b7f-896d-0eb7047a34d3","keyword":"两相反应流","originalKeyword":"两相反应流"},{"id":"e8dbab81-bcbb-4a01-93f2-1d6fdb2d8452","keyword":"燃烧室","originalKeyword":"燃烧室"},{"id":"908b40c1-b363-4d81-a4a0-eb0df62187fa","keyword":"涡流器","originalKeyword":"涡流器"},{"id":"2f30d535-4bae-42e7-9569-27c82a38efae","keyword":"贴体网格","originalKeyword":"贴体网格"}],"language":"zh","publisherId":"gcrwlxb2006z2047","title":"环形燃烧室内气相燃烧及两相流动计算","volume":"27","year":"2006"},{"abstractinfo":"本文建立了分级进风燃烧室高温气固两相流动的实验装置.利用三维激光粒子动态分析仪(PDA),测量了燃烧室内有气相燃烧的高温气固流动的两相瞬时速度场.得到了平均轴向与切向速度、轴向与切向脉动速度均方根值和轴向-切向脉动速度关联量的分布.","authors":[{"authorName":"郑晓川","id":"2f9c56d0-19e0-418d-9e89-551156826fac","originalAuthorName":"郑晓川"},{"authorName":"袁书生","id":"93511142-1768-4dff-a968-f4cbda795011","originalAuthorName":"袁书生"},{"authorName":"张健","id":"f748c3ea-d774-47ef-9c1f-b89c3d38a6a1","originalAuthorName":"张健"},{"authorName":"张洪涛","id":"76d0e047-6ffa-4478-add8-e405b873b765","originalAuthorName":"张洪涛"},{"authorName":"周力行","id":"e0a60b2b-8e73-440a-bb3e-73deb91eea8e","originalAuthorName":"周力行"}],"doi":"","fpage":"1066","id":"9ff3c70a-5251-449d-a6e4-9a3632a0e501","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7f2254b1-7ac5-470a-90ec-58261eed4584","keyword":"分级燃烧","originalKeyword":"分级燃烧"},{"id":"b7807099-c310-4981-b60c-c0da1f97025d","keyword":"高温气固两相流","originalKeyword":"高温气固两相流"},{"id":"b0a31f3c-c28f-446f-bfea-18447802b8c2","keyword":"PDA测量","originalKeyword":"PDA测量"}],"language":"zh","publisherId":"gcrwlxb200606053","title":"分级进风燃烧室内高温气固两相流动的PDA测量","volume":"27","year":"2006"},{"abstractinfo":"通过直接数值模拟的方法研究了旋流燃烧器中三维正庚烷喷雾燃烧,为实际喷雾蒸发和燃烧问题提供参考.气相燃烧模型采用自适应单步反应机理,液相采用拉格朗日方法跟踪,液滴蒸发采用无限传导蒸发模型.本文研究了气相和液相时均特性.结果发现燃烧和中心回流区(CRZ)之间有相互促进作用;同向旋流导致更强的中心回流区(CRZ),但是会有更小的外部回流区(ORZ);富预混燃烧会有更高的化学反应速率,并且蒸发冷却的影响更为明显;湍流入流会导致更高的液滴散布和更小的液滴直径.","authors":[{"authorName":"杨建山","id":"83c39947-e8f2-4cc1-bd3e-38ea51dea9d4","originalAuthorName":"杨建山"},{"authorName":"罗坤","id":"fe06cbad-87d0-492a-81b1-71f3f05d1bf8","originalAuthorName":"罗坤"},{"authorName":"邵长孝","id":"c42aae77-35c1-414d-94c7-7178c65a368f","originalAuthorName":"邵长孝"},{"authorName":"樊建人","id":"e09118a6-7a94-4db6-b794-0fcadd8268e0","originalAuthorName":"樊建人"}],"doi":"","fpage":"335","id":"e417f119-5332-4e38-91d4-0316f2770175","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"85a76304-dd68-4d34-83fb-629e1541600a","keyword":"液雾燃烧","originalKeyword":"液雾燃烧"},{"id":"4c204c6b-d07a-44e9-9cd5-8d7a353cc93f","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"},{"id":"b17df0f8-5599-4d78-8b78-7ec5790b9933","keyword":"旋流燃烧","originalKeyword":"旋流燃烧"},{"id":"f4dfbf18-edb0-4b5d-9023-17a5e3d8a57e","keyword":"时均特性","originalKeyword":"时均特性"}],"language":"zh","publisherId":"gcrwlxb201502023","title":"气液两相旋流燃烧的时均统计特性","volume":"36","year":"2015"},{"abstractinfo":"本文利用三维PDA测量了预混段减小的斗山巴布科克旋流燃烧器气、固两相流动特性,并与设计的斗山巴布科克旋流燃烧器PDA测量结果对比,得出:预混段减小的燃烧器在x/d=0.1,0.3截面存在回流区,并将设计燃烧器回流区的位置由一二次风之间推迟至外二次风区域;预混段减后的燃烧器与设计燃烧器相比,轴向、径向、切向平均速度在二次风区域产生的峰值远离燃烧器轴线;在x/d=O.1—0.5截面,预混段减小的燃烧器与设计燃烧器相比一次风区域颗粒体积流量的峰值变大,二次风区域颗粒体积流量的峰值变小,在燃烧器出口附近回流区内的颗粒体积流量明显降低。","authors":[{"authorName":"曾令艳","id":"f2b94d6c-a575-476e-96a5-dd63681c2d67","originalAuthorName":"曾令艳"},{"authorName":"李争起","id":"bc326248-41df-4515-8531-01df8f1084ca","originalAuthorName":"李争起"},{"authorName":"赵广播","id":"97358fbf-413a-4ab0-a8d8-67e6e134ae3e","originalAuthorName":"赵广播"},{"authorName":"周航","id":"8175a248-536e-4f8e-bee5-40d29a178aed","originalAuthorName":"周航"},{"authorName":"张福成","id":"e23c56e2-a2a7-4a15-8bdd-e47ad8025754","originalAuthorName":"张福成"}],"doi":"","fpage":"1953","id":"5133eafb-3329-4dd4-8ecb-bb21507e7dec","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"38088c84-90b0-4052-8942-cdd5fce5b375","keyword":"燃烧器","originalKeyword":"燃烧器"},{"id":"381d98dc-3325-41a5-b74f-aea3f4eeffde","keyword":"气固两相流动","originalKeyword":"气固两相流动"},{"id":"5fe24637-4ec9-4559-b5fb-2c84f175559c","keyword":"三维PDA","originalKeyword":"三维PDA"}],"language":"zh","publisherId":"gcrwlxb201111040","title":"预混段长度对旋流燃烧器气固两相流动特性的影响","volume":"32","year":"2011"},{"abstractinfo":"在自行设计的多重射流燃烧反应器基础上,通过氢气和空气预混合辅助燃烧方法,用四氯化钛作为前驱体气相水解合成了纳米二氧化钛颗粒.并通过TEM、XRD、TG-DTA、X荧光半定量分析和UV-Vis吸收光谱对所制得的粒子进行了表征.以三氯乙烯(TCE)气体为模拟污染物,考察了粒子的气相光催化性能.在连续流动式玻璃反应器中,反应时间为2h时,所制样品对三氯乙烯的降解率和商品TiO2相当.","authors":[{"authorName":"李根深","id":"24ae4678-0d32-4ef2-8479-1984f7ffc331","originalAuthorName":"李根深"},{"authorName":"蔡平雄","id":"f05091ea-ab5e-434f-9533-5eaf2f330eca","originalAuthorName":"蔡平雄"},{"authorName":"干路平","id":"e19c5098-70b1-4a89-8b95-9fd027b035f8","originalAuthorName":"干路平"},{"authorName":"李春忠","id":"e93f3cfb-3d8e-41f4-866a-2fd30e83f9b9","originalAuthorName":"李春忠"},{"authorName":"丛德滋","id":"e3de06bd-667a-4dd5-9773-84926a928f78","originalAuthorName":"丛德滋"}],"doi":"","fpage":"1990","id":"3c95aa90-576a-4b0b-95bc-a84982f110dc","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords了平均轴向与切向速度、轴向与切向脉动速度均方根值和轴向-切向脉动速度关联量的分布.","authors":[{"authorName":"郑晓川","id":"2f9c56d0-19e0-418d-9e89-551156826fac","originalAuthorName":"郑晓川"},{"authorName":"袁书生","id":"93511142-1768-4dff-a968-f4cbda795011","originalAuthorName":"袁书生"},{"authorName":"张健","id":"f748c3ea-d774-47ef-9c1f-b89c3d38a6a1","originalAuthorName":"张健"},{"authorName":"张洪涛","id":"76d0e047-6ffa-4478-add8-e405b873b765","originalAuthorName":"张洪涛"},{"authorName":"周力行","id":"e0a60b2b-8e73-440a-bb3e-73deb91eea8e","originalAuthorName":"周力行"}],"doi":"","fpage":"1066","id":"9ff3c70a-5251-449d-a6e4-9a3632a0e501","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7f2254b1-7ac5-470a-90ec-58261eed4584","keyword":"分级燃烧","originalKeyword":"分级燃烧"},{"id":"b7807099-c310-4981-b60c-c0da1f97025d","keyword":"高温气固两相流","originalKeyword":"高温气固两相流"},{"id":"b0a31f3c-c28f-446f-bfea-18447802b8c2","keyword":"PDA测量","originalKeyword":"PDA测量"}],"language":"zh","publisherId":"gcrwlxb200606053","title":"分级进风燃烧室内高温气固两相流动的PDA测量","volume":"27","year":"2006"},{"abstractinfo":"通过直接数值模拟的方法研究了旋流燃烧器中三维正庚烷喷雾燃烧,为实际喷雾蒸发和燃烧问题提供参考.气相燃烧模型采用自适应单步反应机理,液相采用拉格朗日方法跟踪,液滴蒸发采用无限传导蒸发模型.本文研究了气相和液相时均特性.结果发现燃烧和中心回流区(CRZ)之间有相互促进作用;同向旋流导致更强的中心回流区(CRZ),但是会有更小的外部回流区(ORZ);富预混燃烧会有更高的化学反应速率,并且蒸发冷却的影响更为明显;湍流入流会导致更高的液滴散布和更小的液滴直径.","authors":[{"authorName":"杨建山","id":"83c39947-e8f2-4cc1-bd3e-38ea51dea9d4","originalAuthorName":"杨建山"},{"authorName":"罗坤","id":"fe06cbad-87d0-492a-81b1-71f3f05d1bf8","originalAuthorName":"罗坤"},{"authorName":"邵长孝","id":"c42aae77-35c1-414d-94c7-7178c65a368f","originalAuthorName":"邵长孝"},{"authorName":"樊建人","id":"e09118a6-7a94-4db6-b794-0fcadd8268e0","originalAuthorName":"樊建人"}],"doi":"","fpage":"335","id":"e417f119-5332-4e38-91d4-0316f2770175","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"85a76304-dd68-4d34-83fb-629e1541600a","keyword":"液雾燃烧","originalKeyword":"液雾燃烧"},{"id":"4c204c6b-d07a-44e9-9cd5-8d7a353cc93f","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"},{"id":"b17df0f8-5599-4d78-8b78-7ec5790b9933","keyword":"旋流燃烧","originalKeyword":"旋流燃烧"},{"id":"f4dfbf18-edb0-4b5d-9023-17a5e3d8a57e","keyword":"时均特性","originalKeyword":"时均特性"}],"language":"zh","publisherId":"gcrwlxb201502023","title":"气液两相旋流燃烧的时均统计特性","volume":"36","year":"2015"},{"abstractinfo":"本文利用三维PDA测量了预混段减小的斗山巴布科克旋流燃烧器气、固两相流动特性,并与设计的斗山巴布科克旋流燃烧器PDA测量结果对比,得出:预混段减小的燃烧器在x/d=0.1,0.3截面存在回流区,并将设计燃烧器回流区的位置由一二次风之间推迟至外二次风区域;预混段减后的燃烧器与设计燃烧器相比,轴向、径向、切向平均速度在二次风区域产生的峰值远离燃烧器轴线;在x/d=O.1—0.5截面,预混段减小的燃烧器与设计燃烧器相比一次风区域颗粒体积流量的峰值变大,二次风区域颗粒体积流量的峰值变小,在燃烧器出口附近回流区内的颗粒体积流量明显降低。","authors":[{"authorName":"曾令艳","id":"f2b94d6c-a575-476e-96a5-dd63681c2d67","originalAuthorName":"曾令艳"},{"authorName":"李争起","id":"bc326248-41df-4515-8531-01df8f1084ca","originalAuthorName":"李争起"},{"authorName":"赵广播","id":"97358fbf-413a-4ab0-a8d8-67e6e134ae3e","originalAuthorName":"赵广播"},{"authorName":"周航","id":"8175a248-536e-4f8e-bee5-40d29a178aed","originalAuthorName":"周航"},{"authorName":"张福成","id":"e23c56e2-a2a7-4a15-8bdd-e47ad8025754","originalAuthorName":"张福成"}],"doi":"","fpage":"1953","id":"5133eafb-3329-4dd4-8ecb-bb21507e7dec","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"38088c84-90b0-4052-8942-cdd5fce5b375","keyword":"燃烧器","originalKeyword":"燃烧器"},{"id":"381d98dc-3325-41a5-b74f-aea3f4eeffde","keyword":"气固两相流动","originalKeyword":"气固两相流动"},{"id":"5fe24637-4ec9-4559-b5fb-2c84f175559c","keyword":"三维PDA","originalKeyword":"三维PDA"}],"language":"zh","publisherId":"gcrwlxb201111040","title":"预混段长度对旋流燃烧器气固两相流动特性的影响","volume":"32","year":"2011"},{"abstractinfo":"在自行设计的多重射流燃烧反应器基础上,通过氢气和空气预混合辅助燃烧方法,用四氯化钛作为前驱体气相水解合成了纳米二氧化钛颗粒.并通过TEM、XRD、TG-DTA、X荧光半定量分析和UV-Vis吸收光谱对所制得的粒子进行了表征.以三氯乙烯(TCE)气体为模拟污染物,考察了粒子的气相光催化性能.在连续流动式玻璃反应器中,反应时间为2h时,所制样品对三氯乙烯的降解率和Name":"徐纲","id":"63aa5f8b-e9ea-429d-a287-1f432d2c7e0f","originalAuthorName":"徐纲"},{"authorName":"聂超群","id":"649428a4-6686-4e5f-bec3-2c73445f96c9","originalAuthorName":"聂超群"},{"authorName":"黄伟光","id":"1ebf8940-a943-47e9-8ed1-9b2bbe63b2ed","originalAuthorName":"黄伟光"},{"authorName":"陈静宜","id":"7b9ad1c6-4209-440d-97fd-f22dedf26da0","originalAuthorName":"陈静宜"}],"doi":"","fpage":"141","id":"6243e938-c161-4957-8b00-e1d8402f318d","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c89497c2-1517-4166-8c41-a417ca9043b9","keyword":"燃气轮机燃烧室","originalKeyword":"燃气轮机燃烧室"},{"id":"b6534950-8a57-4fbd-a7db-b93741630252","keyword":"低热值煤气","originalKeyword":"低热值煤气"}],"language":"zh","publisherId":"gcrwlxb200301044","title":"燃气轮机燃烧室燃烧天然气和燃烧中低热值煤气的比较","volume":"24","year":"2003"}],"totalpage":4521,"totalrecord":45206}