{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在金刚石合成过程中,采用压力与温度双参数动态匹配工艺,外加负荷缓慢上升而外加功率缓慢下降,使得压力和温度维持在富晶区生长区间,并且可以沿着金刚石等质量线方向在限定的范围内移动,保持压力与温度动态匹配,金刚石得以长时间稳定地连续生长,单次合成金刚石可达580克拉,高品级率达60%,产量和高品级率均创新高.","authors":[{"authorName":"王秦生","id":"b65f7566-f2ec-4119-9dec-d352bb79fca2","originalAuthorName":"王秦生"},{"authorName":"林玉","id":"fc6a5736-d69b-4f99-836c-02caad010286","originalAuthorName":"林玉"},{"authorName":"赵清国","id":"a39d4bbc-0766-446e-8f18-c4c291317df9","originalAuthorName":"赵清国"},{"authorName":"李利红","id":"25e8a12b-ca76-4b3e-babe-26532ac1e5a0","originalAuthorName":"李利红"},{"authorName":"刘杰","id":"9b798035-b0f2-41ae-a05f-453d1146bee4","originalAuthorName":"刘杰"}],"doi":"","fpage":"475","id":"7438a112-d3bc-4e9a-bab6-bc1fde0c0b69","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"5fad1d66-489f-4922-be77-25af5b03e036","keyword":"高品级金刚石","originalKeyword":"高品级金刚石"},{"id":"8e05d415-f310-4794-a89d-d58cd48f3716","keyword":"富晶区","originalKeyword":"富晶区"},{"id":"384e1452-80eb-4e38-92f6-5a1688936281","keyword":"生长条件","originalKeyword":"生长条件"},{"id":"0a32fc80-50be-456e-a89e-c8db7b98af1b","keyword":"动态匹配工艺","originalKeyword":"动态匹配工艺"}],"language":"zh","publisherId":"rgjtxb98201303020","title":"高品级金刚石富晶区生长条件和动态匹配合成工艺","volume":"42","year":"2013"},{"abstractinfo":"本文比较系统地介绍了合成高级金刚石的一种新方法.研究中采用粉状触媒和粉状石墨作为原料,在超高压、高温的条件下,经一定的工艺流程合成了高品级粗、细粒度金刚石,其各项技术指标达到了国内领先水平.用该方法合成金刚石的突出特点是粒级可控、粒度集中、单产高、连聚晶少、颜色黄、强度高.","authors":[{"authorName":"朱凤福","id":"055b0452-f759-44c2-a5e0-177a412b7d75","originalAuthorName":"朱凤福"},{"authorName":"宁磊","id":"08c11d6b-e3f9-4f15-842a-429cddc13656","originalAuthorName":"宁磊"},{"authorName":"张铁喜","id":"2d5d8e97-a88f-4078-b274-c49565941e3d","originalAuthorName":"张铁喜"},{"authorName":"王宗烈","id":"c06b0bd7-78aa-4f3f-8753-a1a0f22b1114","originalAuthorName":"王宗烈"},{"authorName":"胡本权","id":"1db7cd9d-d332-4891-9c2e-64e54b11189f","originalAuthorName":"胡本权"}],"doi":"10.3969/j.issn.1000-985X.2002.02.021","fpage":"169","id":"b13c1fa1-8be4-47ac-949d-e9e9757297af","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ce5695ba-0ed9-422e-8be2-8d6fda316955","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"83fd0625-3165-4d79-8c26-5aed3aa3dd5f","keyword":"粉状技术","originalKeyword":"粉状技术"},{"id":"8b37d53c-373f-4899-980a-5c6e9e424486","keyword":"粉状石墨","originalKeyword":"粉状石墨"},{"id":"8c9b7ace-2101-4b1e-a7ef-e1df338353f6","keyword":"粉状触媒","originalKeyword":"粉状触媒"}],"language":"zh","publisherId":"rgjtxb98200202021","title":"用粉状技术合成高品级金刚石的研究","volume":"31","year":"2002"},{"abstractinfo":"目的:研究热丝化学气相沉积( HFCVD)工艺对金刚石薄膜生长的影响,确定影响金刚石薄膜生长的因素。方法采用热丝CVD法,以丙酮为碳源,在不同晶面的Si衬底上沉积金刚石薄膜,通过金相显微镜、X射线衍射仪分析薄膜生长特性。结果不同沉积温度下生长的金刚石薄膜表面形貌差异很大。在高、低碳源浓度下分别获得了(400)和(111)晶面取向的金刚石薄膜。采用分步沉积法,改善了成膜的效率。结论气源浓度和生长温度是影响金刚石薄膜生长的重要因素,分步沉积法对于金刚石薄膜的生长有较大影响。","authors":[{"authorName":"康强","id":"782d2b7e-6422-4faf-91f9-be161f1dcc55","originalAuthorName":"康强"},{"authorName":"杨瑞霞","id":"f9860088-931e-43c8-bc46-09a164c67acd","originalAuthorName":"杨瑞霞"},{"authorName":"石双振","id":"7804297d-077e-41da-878c-f70a62730b5d","originalAuthorName":"石双振"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.02.006","fpage":"29","id":"e55a1f65-9d7a-4c4c-9164-675e889eb8dc","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d221f631-b2b4-4219-b84e-40bbace1a131","keyword":"金刚石薄膜","originalKeyword":"金刚石薄膜"},{"id":"c9848031-d589-4cf7-90fe-493f86dd7181","keyword":"择优取向","originalKeyword":"择优取向"},{"id":"e3aee399-db09-4497-9fcd-b5457e931da5","keyword":"碳源浓度","originalKeyword":"碳源浓度"},{"id":"b72769d6-9cc7-4f89-b8dd-769041a1dd12","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"bmjs201502006","title":"高取向低粗糙度金刚石薄膜生长的研究","volume":"","year":"2015"},{"abstractinfo":"介绍了用粉末技术合成金刚石的一种新方法,试验研究中采用加入少量稀土的NiFe合金粉末作为原料,在超高压、高温的条件下,经一定的工艺流程合成了高品级金刚石.该方法的显著特点是提高金刚石的粗粒度百分比,金刚石样品质量高,颜色黄.","authors":[{"authorName":"戴兰芳","id":"bdee6fa2-f838-4b71-9663-2198549c52c3","originalAuthorName":"戴兰芳"},{"authorName":"王绍斌","id":"9d61825c-5684-4fcf-b4a0-461759adfd54","originalAuthorName":"王绍斌"},{"authorName":"唐中杰","id":"133f47dc-7e36-4327-b210-2a942ef94c90","originalAuthorName":"唐中杰"}],"doi":"10.3969/j.issn.1004-0277.2005.03.021","fpage":"79","id":"c1b24f81-cbf8-42d1-913e-948c3619818a","issue":"3","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"33fd79b7-6107-40d0-972c-c3e38d837195","keyword":"稀土","originalKeyword":"稀土"},{"id":"cebc5a12-4ad1-4a4c-8a33-9eff6a63e812","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"8e5862c8-bce8-4919-9b6c-6649d9b1b20c","keyword":"粉状催化剂","originalKeyword":"粉状催化剂"}],"language":"zh","publisherId":"xitu200503021","title":"稀土在人造金刚石催化剂中的应用","volume":"26","year":"2005"},{"abstractinfo":"使用自行研制的椭球谐振腔式MPCVD装置,以H2-CH4为气源、沉积功率8 kW条件下,在不同CH4浓度、沉积温度和气体流量工艺条件下制备了大面积金刚石膜.使用X射线衍射仪对金刚石膜的择优取向的变化规律进行了研究.实验结果表明,高功率条件下工艺参数对金刚石膜的择优取向有不同程度的影响.在CH4浓度由0.5%上升到1.0%时,金刚石膜的择优取向由(220)转变为(111),由1.O%上升到2.5%时,则由(111)转变为(220)以及(311);在700 ~ 1050℃温度范围内,随着沉积温度的升高,金刚石膜(111)择优取向生长的倾向增高,当沉积温度高于1050℃时,金刚石膜改变了原先的以(111)择优取向生长的趋势,变为了以(100)择优取向生长;在气体流速为200~1000 sccm范围内时,随气体流量的增加,金刚石膜(111)择优取向的倾向增加.当气体流量大于1000sccm时,金刚石膜(111)择优取向的倾向又稍有降低.","authors":[{"authorName":"于盛旺","id":"39e098aa-5e3a-4d65-93e1-14c679143787","originalAuthorName":"于盛旺"},{"authorName":"刘艳青","id":"cad2bde4-f581-4d7f-8d5d-1cc33e2cd5c8","originalAuthorName":"刘艳青"},{"authorName":"唐伟忠","id":"c922031e-c303-4461-a8d8-f0fa1a07d2f6","originalAuthorName":"唐伟忠"},{"authorName":"申艳艳","id":"eaf76989-dad0-4264-82cd-352adb2b5371","originalAuthorName":"申艳艳"},{"authorName":"贺志勇","id":"1a1c2e81-c334-4356-ad6b-e63ecc42eaa2","originalAuthorName":"贺志勇"},{"authorName":"唐宾","id":"12bbcfcf-794c-45b8-8389-1232d26d5393","originalAuthorName":"唐宾"}],"doi":"","fpage":"868","id":"09b5c6b9-c749-434f-b6ae-cf3af1dde0f5","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"bfc99f92-195d-4793-91e8-09cd138c4a98","keyword":"金刚石膜","originalKeyword":"金刚石膜"},{"id":"e06411f8-2a4d-471f-befd-463ea0614c0b","keyword":"高功率MPCVD","originalKeyword":"高功率MPCVD"},{"id":"dea0eba2-05dc-4ec1-99f4-05d054230332","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"233bdedd-c980-431e-97af-7459304afd00","keyword":"择优取向","originalKeyword":"择优取向"}],"language":"zh","publisherId":"rgjtxb98201204009","title":"工艺参数对高功率MPCVD金刚石膜择优取向的影响研究","volume":"41","year":"2012"},{"abstractinfo":"高温高压条件下,通过在Fe64Ni36-C合成体系中添加含氮化合物Ba(N3)2和羰基镍粉(carbonyl nickel)两种方式分别合成了高氮浓度金刚石大单晶.使用傅立叶红外光谱测试(FTIR)分别对所合成的金刚石大单晶进行了测试.对金刚石大单晶样品中氮的存在形式行了分析,并对晶体中的氮浓度进行了定量计算,进而对高氮浓度金刚石大单晶中A心氮原子对的形成机理进行了讨论.","authors":[{"authorName":"李勇","id":"f15c0aef-526f-4c43-943e-beec01b889e3","originalAuthorName":"李勇"},{"authorName":"冯云光","id":"c9354c57-3e94-4ad0-8709-a474eb8b0403","originalAuthorName":"冯云光"},{"authorName":"金慧","id":"f27675f4-7126-4ddf-86f5-c865376d64b6","originalAuthorName":"金慧"},{"authorName":"贾晓鹏","id":"824ddaef-9d07-40e7-b493-183677aefda9","originalAuthorName":"贾晓鹏"},{"authorName":"马红安","id":"537106ce-5e9b-4a3a-9ba0-e940cc043095","originalAuthorName":"马红安"}],"doi":"","fpage":"2984","id":"57ddf003-454e-4882-bd86-f652b3197e38","issue":"11","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"38ead05e-a1dc-4172-a23e-c7a26874f5c4","keyword":"高温高压","originalKeyword":"高温高压"},{"id":"38bf4864-1852-43e6-896c-b846a0a69d91","keyword":"金刚石大单晶","originalKeyword":"金刚石大单晶"},{"id":"7369d2c0-5df5-4b5a-81de-b62a60921eda","keyword":"氮浓度","originalKeyword":"氮浓度"}],"language":"zh","publisherId":"rgjtxb98201511009","title":"高温高压下高氮浓度金刚石大单晶的合成与研究","volume":"44","year":"2015"},{"abstractinfo":"采用直流热阴极PCVD技术,经过生长温度的周期性调整,达到清除多余游离碳和刻蚀非金刚石相的目的,实现了在高甲烷浓度条件下制备纳米金刚石膜.金刚石膜的生长过程分为沉积阶段和刻蚀去除阶段,沉积时间为15min,刻蚀时间为5min,生长周期为20min,总的沉积时间为6h.采用拉曼光谱仪、SEM和XRD分析仪对样品进行了分析,结果显示样品具有纳米金刚石膜的基本特征.研究表明,在高甲烷浓度条件下,直流热阴极PCVD间歇生长模式可有效去除生长腔内的游离碳成分,实现正常放电激励,维持正常生长,制备出纳米金刚石膜.","authors":[{"authorName":"姜宏伟","id":"5e8b7087-0df9-4ab4-a8e0-1a644b546fe0","originalAuthorName":"姜宏伟"},{"authorName":"彭鸿雁","id":"2ad69bda-8397-43a5-b4bf-10b26063e310","originalAuthorName":"彭鸿雁"},{"authorName":"陈玉强","id":"830c8601-c9e5-4ae1-b52a-2556e0147b31","originalAuthorName":"陈玉强"},{"authorName":"祁文涛","id":"28ef5e18-2b98-4332-aeac-ba2687c7ee49","originalAuthorName":"祁文涛"},{"authorName":"王军","id":"90361050-bcbd-4f0c-9399-9f124ca73885","originalAuthorName":"王军"},{"authorName":"曲晏宏","id":"ce2526e9-daf1-4b5e-9329-afae00b96a76","originalAuthorName":"曲晏宏"}],"doi":"","fpage":"67","id":"b0887d0e-dc64-4d11-93d8-f87731cab181","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dab8a0a8-2726-436f-882e-62398d531e0e","keyword":"直流热阴极PCVD","originalKeyword":"直流热阴极PCVD"},{"id":"79979c0a-c3e1-435d-ba7c-f297225c99f8","keyword":"高甲烷浓度","originalKeyword":"高甲烷浓度"},{"id":"c44b2bd7-f6f2-4752-b31a-4e5c203e8c73","keyword":"纳米金刚石膜","originalKeyword":"纳米金刚石膜"},{"id":"6c586f0c-68a3-4493-9e81-ae43f70f7e4b","keyword":"间歇式","originalKeyword":"间歇式"}],"language":"zh","publisherId":"cldb2010z1021","title":"间歇生长模式高甲烷浓度制备纳米金刚石膜","volume":"24","year":"2010"},{"abstractinfo":"采用热丝化学气相沉积法,改变工作气压和偏流,在硅基片上沉积了高掺硼金刚石膜.利用扫描电镜(SEM)、拉曼光谱和X射线衍射仪对沉积的金刚石膜表面形貌和结构进行表征.结果显示:当气体压强从3kPa降低到1. 5kPa时,金刚石膜有较平的表面形貌和和较好的晶形,薄膜的晶体性质得到良好的改善.但是继续降气体压强,从1.5kPa到 0.5kPa时,却呈现出相反的趋势.固定气体压强(1. 5kPa),改变偏流,结果表明:适当的偏流(3A)可以改善掺硼金刚石的质量,偏流较高会导致薄膜中非金刚石相增多.","authors":[{"authorName":"贾福超","id":"5f617c7c-31d7-49f2-8402-e64bbbb31eab","originalAuthorName":"贾福超"},{"authorName":"白亦真","id":"05c65fe1-7c88-4ade-a4c5-afb6442b7f1f","originalAuthorName":"白亦真"},{"authorName":"屈芳","id":"4c2ea015-c523-4454-9617-6320c7660607","originalAuthorName":"屈芳"},{"authorName":"孙剑","id":"6ba5389b-990e-4f31-a510-80adefd58525","originalAuthorName":"孙剑"},{"authorName":"赵纪军","id":"d61845a4-7fdd-4ef8-80da-63db3efa8e10","originalAuthorName":"赵纪军"},{"authorName":"姜辛","id":"aadddd3e-3c35-4bce-bc4c-4eb0f3f38360","originalAuthorName":"姜辛"}],"doi":"10.1016/S1872-5805(09)60039-1","fpage":"357","id":"40b986c9-e5aa-42c7-9af8-1f54bc51aef9","issue":"5","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"bc110015-0dc1-4e5c-8bef-46fbab096d10","keyword":"高掺硼金刚石膜","originalKeyword":"高掺硼金刚石膜"},{"id":"6b3eb90a-08ec-4986-8442-d90e8b0eadb7","keyword":"气体压强","originalKeyword":"气体压强"},{"id":"81460b78-0a18-4a1a-a4f1-0e25b74d45e1","keyword":"偏流","originalKeyword":"偏流"},{"id":"f7f7a066-16c9-47b8-9d00-9bb78279efc8","keyword":"热灯丝化学气相沉积","originalKeyword":"热灯丝化学气相沉积"},{"id":"afdbc37e-5d60-4dbe-816c-8b1ce7aed6fe","keyword":"扫描电镜","originalKeyword":"扫描电镜"},{"id":"30b30d7b-07e6-473e-ac58-2b3c26257d7b","keyword":"X射线衍射仪","originalKeyword":"X射线衍射仪"},{"id":"23f0d808-4565-4fb1-afba-bb318214f0c5","keyword":"拉曼光谱","originalKeyword":"拉曼光谱"}],"language":"zh","publisherId":"xxtcl201005007","title":"气压和偏流对高掺硼金刚石晶体性质的影响","volume":"25","year":"2010"},{"abstractinfo":"随着我国电子技术的不断发展,对于电子封装材料的要求不断提高,作为新一代电子封装材料的金刚石颗粒增强金属基复合材料由于具备优异的热物理性能和良好的机械性能,受到了广泛的关注。就金刚石增强金属基复合材料的研究进程进行了总结,并列举了国内外研究者们在金刚石增强金属基复合材料方面所取得的进展。包括针对复合材料界面优化所采用的金属基体合金化、金刚石表面金属化以及先进制备技术的开发。并且总结了复合材料导热理论研究中所提出的理论和模型。最后,对于金刚石颗粒增强金属基高导热复合材料的进一步研究方向提出了展望。","authors":[{"authorName":"王西涛","id":"6a473bba-3ee4-41aa-ae5d-3de6e494b276","originalAuthorName":"王西涛"},{"authorName":"张洋","id":"0fd2d596-2502-456d-86c0-69a997df6b20","originalAuthorName":"张洋"},{"authorName":"车子璠","id":"22ccc012-b6ad-49f1-b6a6-a7c17cf2368a","originalAuthorName":"车子璠"},{"authorName":"李建伟","id":"9da68e86-9bcd-49d7-9939-ea51813a2164","originalAuthorName":"李建伟"},{"authorName":"张海龙","id":"7ea3c03d-3f6f-418f-af65-a3a1e7cf3129","originalAuthorName":"张海龙"}],"doi":"10.3969/j.issn.1001-9731.2014.07.001","fpage":"7001","id":"f04c58ec-451e-40bb-97fc-bdcaa735e2ba","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d99785cd-15cf-4839-a421-8484ff80546a","keyword":"金刚石增强金属基复合材料","originalKeyword":"金刚石增强金属基复合材料"},{"id":"bacb8125-508d-4c40-9d62-d76b817ffb80","keyword":"界面优化","originalKeyword":"界面优化"},{"id":"5bdf0d85-5a16-430e-8ab9-519cf6e4aaa9","keyword":"导热模型","originalKeyword":"导热模型"}],"language":"zh","publisherId":"gncl201407001","title":"金刚石颗粒增强金属基高导热复合材料的研究进展","volume":"","year":"2014"},{"abstractinfo":"用热解CVD装置研究了甲烷浓度、基底温度、室压对钢渗铬沉积金刚石膜的影响.结果表明,甲烷浓度越低,沉积得到的金刚石膜的晶形越好,甲烷浓度超过0.8%后,金刚石的形貌呈\"菜花状\";基体温度高时,难于在渗铬层上形成连续的金刚石膜,但基体温度高所得的晶形较好;室压越高,金刚石的形核密度越高,但随室压的升高,金刚石的形貌变差.菜花状金刚石膜是由大量二次晶核长大的微晶金刚石晶粒组成,含有较多的非金刚石碳相.","authors":[{"authorName":"黄元盛","id":"a6206bbd-8493-40ae-a5fb-317f088b9a23","originalAuthorName":"黄元盛"},{"authorName":"邱万奇","id":"9e639159-7a38-4056-9b0f-cc26aca46644","originalAuthorName":"邱万奇"},{"authorName":"罗承萍","id":"08135deb-d3bf-4373-af8c-8a9afdfd7665","originalAuthorName":"罗承萍"}],"doi":"10.3969/j.issn.1673-2812.2005.01.018","fpage":"64","id":"f3478c19-ccc0-4d55-8e63-9ed127c01628","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f881b2b0-7200-4414-9a59-d69a39c01311","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"e614f413-8460-4b60-ac68-7205a28860e2","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"d3d3ab4d-9f5e-4211-a49f-d7521fe19b4b","keyword":"渗铬层","originalKeyword":"渗铬层"}],"language":"zh","publisherId":"clkxygc200501018","title":"钢渗铬沉积金刚石膜的研究","volume":"23","year":"2005"}],"totalpage":2361,"totalrecord":23607}