{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"各向异性磁电阻(AMR)薄膜材料被广泛应用于磁传感器和硬盘的读出磁头中.器件的小型化要求AMR薄膜材料必须做得很薄.采用磁控溅射的方法在玻璃基片上制备了Ta/NiFe/Ta磁电阻超薄薄膜,将几个纳米厚的Al2O3层插入Ta/NiFe/Ta薄膜的Ta/NiFe界面,研究该插层对超薄NiFe薄膜性能的影响.结果表明:由于Al2O3层的“镜面反射”作用,适当厚度和结构状态的Al2O3层可以提高薄膜的磁电阻值, 当NiFe薄膜厚度为5 nm时,通过在界面处插入约2nm的Al2O3层,薄膜的磁电阻值从0.65%提高到了0.80%,增加幅度超过20%.性能提高的主要原因是除纳米Al2O3插层的“镜面反射”作用外, 抑制Ta/NiFe的界面反应以及减少Ta层分流也是重要的影响因素.","authors":[{"authorName":"丁雷","id":"059d8e7a-b55e-48ff-8012-a2028b0d1210","originalAuthorName":"丁雷"},{"authorName":"王乐","id":"a25c97e0-9499-4df7-84f3-baab309ff14f","originalAuthorName":"王乐"},{"authorName":"滕蛟","id":"e11f2eed-b6b4-4253-b1f2-a835ac2ab37f","originalAuthorName":"滕蛟"},{"authorName":"于广华","id":"09e8ec5b-561a-485b-a403-7dab93655513","originalAuthorName":"于广华"}],"doi":"10.3969/j.issn.0258-7076.2009.01.006","fpage":"26","id":"a34ed076-473f-4770-8481-e8231eb0993f","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"fbd5d9b0-1580-45dd-8556-21a8e68ae030","keyword":"NiFe薄膜","originalKeyword":"NiFe薄膜"},{"id":"7773c71f-c0af-45b4-97ce-6eb27e298c7e","keyword":"各向异性磁电阻(AMR)","originalKeyword":"各向异性磁电阻(AMR)"},{"id":"c1a07c30-1bb5-4c4f-990c-8ba5e190f288","keyword":"纳米氧化层","originalKeyword":"纳米氧化层"},{"id":"e6012c98-2152-44a6-9dd4-3fa44f406dd3","keyword":"镜面反射","originalKeyword":"镜面反射"}],"language":"zh","publisherId":"xyjs200901006","title":"Al2O3层对超薄各向异性磁电阻薄膜性能影响的研究","volume":"33","year":"2009"},{"abstractinfo":"通过间歇式抗高温氧化实验,建立了纯镍电铸层和Ni-ZrO2纳米复合电铸层高温氧化动力学模型,分析了电铸层表面和横截面的形貌,测定了电铸层的组织结构.结果表明,Ni-ZrO2纳米复合电铸层抗高温氧化性能明显优于纯镍铸层,复合电铸层表面生成的氧化膜晶粒细小且致密,并且该氧化膜较薄,产生的内应力较小,与复合电铸层的黏附性较好.","authors":[{"authorName":"张文峰","id":"ae2a2163-1c8f-4d43-aad9-a82a3c01d3c8","originalAuthorName":"张文峰"},{"authorName":"朱荻","id":"9feff45e-da54-4d9b-a6f4-94bb82734b0b","originalAuthorName":"朱荻"}],"doi":"10.3969/j.issn.1004-227X.2006.05.001","fpage":"1","id":"87cd13ac-d799-485e-830a-96f1d4fd5ae7","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"a9f806a5-5b4f-486b-8867-adb5edc292fb","keyword":"纳米复合电铸层","originalKeyword":"纳米复合电铸层"},{"id":"66507629-1782-41db-8406-371121346a19","keyword":"Ni-ZrO2","originalKeyword":"Ni-ZrO2"},{"id":"1a45d2e8-3e14-4b5d-83a3-155e2e1306cb","keyword":"氧化膜","originalKeyword":"氧化膜"},{"id":"d60905c8-dadf-4666-9a30-2ac809e62a5c","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"406a2d7d-54f3-4809-922a-4f7b658af24d","keyword":"抗高温氧化","originalKeyword":"抗高温氧化"}],"language":"zh","publisherId":"ddyts200605001","title":"Ni-ZrO2纳米复合电铸层抗高温氧化性能的研究","volume":"25","year":"2006"},{"abstractinfo":"研究了纳米氧化铈颗粒对电沉积锌层耐腐蚀性能的影响.结果表明,纳米氧化铈颗粒能显著提高锌镀层的耐蚀性;能促使锌镀层晶面产生择优取向,并使锌镀层更致密、更均匀;在一定范围内增加镀锌液中纳米氧化铈颗粒含量,锌镀层的耐蚀性可随之提高;此外,纳米氧化铈颗粒的分散方法对锌镀层的耐蚀性也有影响.","authors":[{"authorName":"骆心怡","id":"704c09ba-cf12-480b-a767-03a08925d10d","originalAuthorName":"骆心怡"},{"authorName":"何建平","id":"d804c384-bb7f-4c63-8274-5787ffc397c0","originalAuthorName":"何建平"},{"authorName":"朱正吼","id":"8d29ebe3-c54f-4d61-809c-8131454cac81","originalAuthorName":"朱正吼"},{"authorName":"李顺林","id":"239a52a6-d255-4e18-a86f-b16c829d9649","originalAuthorName":"李顺林"},{"authorName":"卢翔","id":"1c54dca0-bac1-4edd-bc0a-481ea05b8de8","originalAuthorName":"卢翔"}],"doi":"10.3969/j.issn.1001-1560.2003.01.001","fpage":"1","id":"e2150ae1-849c-4c13-84c3-c1d9f981681c","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"aef320f9-4933-4086-bab7-eeba3bc2325a","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"9047d6d1-74be-4b1a-976c-55174e954a1d","keyword":"纳米复合镀层","originalKeyword":"纳米复合镀层"},{"id":"f2bcd3c3-e09d-491a-8b39-7edf2add169c","keyword":"锌镀层","originalKeyword":"锌镀层"},{"id":"49ba0cb3-cafe-49b5-81ac-0f6cc724e0de","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"243b4932-ce83-43a9-8fa6-319a4ce26a56","keyword":"纳米氧化铈颗粒","originalKeyword":"纳米氧化铈颗粒"}],"language":"zh","publisherId":"clbh200301001","title":"纳米氧化铈颗粒对电沉积锌层耐蚀性的影响","volume":"36","year":"2003"},{"abstractinfo":"目的 增强钕铁硼材料的耐腐蚀性能.方法 在钕铁硼磁体材料表面电沉积含有氧化硅、氧化钛纳米粒子的复合锌层.结果在氯化物镀锌溶液中加入10 g/L的氧化硅纳米粒子,可以获得氧化硅质量分数在3%以上的氧化硅纳米粒子复合镀锌层,而加入10 g/L的氧化钛纳米粒子的镀液所获得的复合镀层中,氧化钛的质量分数只有0.3%.结论 中性盐雾腐蚀和盐水浸泡腐蚀试验结果表明,含有氧化硅纳米颗粒的复合镀锌层的耐腐蚀性能得到了提高,而含有氧化钛纳米颗粒的复合镀锌层的耐腐蚀性能则没有提高.含有纳米粒子的复合镀液经过 1 年的放置和间断使用,仍然保持着纳米颗粒均匀分散的稳定性和在镀层中稳定析出氧化硅纳米粒子的特征.","authors":[{"authorName":"向可友","id":"e1271192-a489-4f14-9602-fe1f7c2baecd","originalAuthorName":"向可友"},{"authorName":"徐良","id":"7ab9582c-192b-43d7-844b-c0d67258e250","originalAuthorName":"徐良"},{"authorName":"刘梦兰","id":"5ef5d1f8-0a2b-4115-8617-7d1f3301a83e","originalAuthorName":"刘梦兰"},{"authorName":"高荣龙","id":"7a2d57e1-b91b-4b04-9880-29eb78bdff4d","originalAuthorName":"高荣龙"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.04.006","fpage":"27","id":"99b756ec-6bf3-431a-8020-5ffc890a574d","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"43127cf3-11ae-40fa-bd92-b3e131fd8a33","keyword":"钕铁硼","originalKeyword":"钕铁硼"},{"id":"e287c731-6e87-4e09-9202-dcd73f1d9bba","keyword":"复合镀锌","originalKeyword":"复合镀锌"},{"id":"036ddfe7-5d3d-4068-b66a-629a992cfb2e","keyword":"纳米氧化硅","originalKeyword":"纳米氧化硅"},{"id":"b88e3ea2-cf24-47bd-ac90-136fac89415f","keyword":"耐腐蚀性能","originalKeyword":"耐腐蚀性能"},{"id":"b5d32164-5b20-40d7-ae83-c49044282919","keyword":"纳米氧化钛","originalKeyword":"纳米氧化钛"},{"id":"178694b2-838d-4a4c-894e-32f0ea831671","keyword":"中性盐雾","originalKeyword":"中性盐雾"}],"language":"zh","publisherId":"bmjs201704006","title":"钕铁硼磁体表面电沉积纳米氧化硅复合镀锌层的研究","volume":"46","year":"2017"},{"abstractinfo":"氧化硅/金纳米壳层因具有由其核/壳相对尺寸所决定的特殊光学性能和良好的生物相容性, 所以在纳米医学等许多领域得到了广泛的重视. 本文综述了氧化硅/金纳米壳层的研究现状, 总结了相关的制备方法, 评述了在纳米医学中的重要应用, 并对其研究前景进行了展望.
","authors":[{"authorName":"刘琨","id":"40bc968b-cc07-445d-9509-e6aef357ed1e","originalAuthorName":"刘琨"},{"authorName":"冯其明","id":"e52e650c-2ed3-4d7a-bd61-1183eb8ef46a","originalAuthorName":"冯其明"},{"authorName":"李文杰","id":"a8c590e9-3302-4d19-aeca-283d0f28cf29","originalAuthorName":"李文杰"},{"authorName":"陈云","id":"eed37fd0-3f28-4b9e-b0fd-e0a90d17fda1","originalAuthorName":"陈云"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2006.01038","fpage":"1038","id":"21813fdd-08c9-41e1-bf91-0ab7adedc703","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"38a519a2-935c-4d06-83f0-7fc28844a3a1","keyword":"氧化硅/金","originalKeyword":"氧化硅/金"},{"id":"4c809c6b-faf6-4b5c-bd41-50123415d412","keyword":" nanoshells","originalKeyword":" nanoshells"},{"id":"de18e71b-3299-4224-bd07-9c83d46b1d7e","keyword":" core-shell","originalKeyword":" core-shell"},{"id":"1795a64b-74c9-4a1e-8856-b27bd07caf47","keyword":" nanomedicine","originalKeyword":" nanomedicine"}],"language":"zh","publisherId":"1000-324X_2006_5_1","title":"氧化硅/金纳米壳层的制备及其在纳米医学中应用的研究现状","volume":"21","year":"2006"},{"abstractinfo":"氧化硅/金纳米壳层因具有由其核/壳相对尺寸所决定的特殊光学性能和良好的生物相容性,所以在纳米医学等许多领域得到了广泛的重视.本文综述了氧化硅/金纳米壳层的研究现状,总结了相关的制备方法,评述了在纳米医学中的重要应用,并对其研究前景进行了展望.","authors":[{"authorName":"刘琨","id":"a73f5bbb-cd6e-4365-ac52-9169be220873","originalAuthorName":"刘琨"},{"authorName":"冯其明","id":"c961642a-0815-4e96-ac52-1f08e49dbe01","originalAuthorName":"冯其明"},{"authorName":"李文杰","id":"2a81fbf9-2326-4edc-9a85-5445ae7aaa45","originalAuthorName":"李文杰"},{"authorName":"陈云","id":"0fec8079-8397-485a-8207-73e7a7cae099","originalAuthorName":"陈云"}],"doi":"10.3321/j.issn:1000-324X.2006.05.003","fpage":"1038","id":"ed4edd68-c276-40b7-ab62-e3826ace7aec","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"2070eec2-9d55-4b39-9005-1681f8b8fcd6","keyword":"氧化硅/金","originalKeyword":"氧化硅/金"},{"id":"c0784051-605c-4dec-89d8-ca774117232a","keyword":"纳米壳层","originalKeyword":"纳米壳层"},{"id":"ffe742e2-452c-4f9f-b210-47bbae1ab772","keyword":"核-壳","originalKeyword":"核-壳"},{"id":"4ef41a98-a738-4d2e-a864-de1fd82f8b8f","keyword":"纳米医学","originalKeyword":"纳米医学"}],"language":"zh","publisherId":"wjclxb200605003","title":"氧化硅/金纳米壳层的制备及其在纳米医学中应用的研究现状","volume":"21","year":"2006"},{"abstractinfo":"通过在微弧氧化电解液中添加纳米SiO2颗粒配制纳米电解液,在铝合金表面制备了纳米复合微弧氧化层,考察了恒电压和恒电流两种模式下纳米SiO2复合对微弧氧化层生长动力学的影响.结果表明,恒电压模式下,纳米SiO2复合大幅度提高了生长电流和微弧氧化层生长速率;恒电流模式下,纳米SiO2复合提高了微弧氧化层生长速率,电流效率提高.纳米SiO2颗粒在纳米复合微弧氧化层中掺杂,形成杂质能级,并且降低了微弧氧化层材料的禁带宽度,促进了微弧氧化电击穿过程,是纳米SiO2复合促进微弧氧化层生长的主要原因.","authors":[{"authorName":"马世宁","id":"03db6c51-597a-4e50-a4f3-671762eef237","originalAuthorName":"马世宁"},{"authorName":"索相波","id":"4ed7656f-098b-4410-99e4-e229b8da586c","originalAuthorName":"索相波"},{"authorName":"邱骥","id":"c5811f95-407b-47f2-8623-bad09bc07828","originalAuthorName":"邱骥"},{"authorName":"朱海燕","id":"9354a137-647d-42ef-a9ef-039be4b3a143","originalAuthorName":"朱海燕"}],"doi":"10.3969/j.isan.1005-5053.2012.1.014","fpage":"68","id":"03ed4382-ab1f-4298-b720-5af624b4e80d","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"286217a1-f982-4004-9ba1-f067b39ef0f7","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"8ceeedf9-d505-4fd3-b0fd-43856a1851d3","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"9e50fbf6-28a6-4552-8d58-b9b92c3e03de","keyword":"纳米复合","originalKeyword":"纳米复合"},{"id":"f244e414-0449-4cc9-aa04-3b2bebda2c17","keyword":"生长动力学","originalKeyword":"生长动力学"},{"id":"d2bd4e31-2bf5-4a8c-8f20-f47f0fd67a56","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"hkclxb201201014","title":"纳米SiO2复合对铝合金表面微弧氧化层生长动力学的影响","volume":"32","year":"2012"},{"abstractinfo":"通过控制双氧水/浓硫酸混合氧化液的反应配比和反应温度,在医用纯钛表面得到具有不同纳米形貌的二氧化钛凝胶层.利用场发射扫描电镜(FE-SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)和接触角测定仪对化学氧化处理后的钛表面特性进行了表征,并推导了不同纳米形貌凝胶层的构建机理.结果表明,双氧水/浓硫酸溶液处理是一个热力学控制的化学溶解与氧化的过程,随着浓硫酸含量的增加,溶液中C(H+)增大,凝胶层内TiO2的溶解速度大于溶液沉积出二氧化钛的速度,导致凝胶孔的深度增加最终形成三维网络结构;模拟体液中的矿化实验表明,化学氧化处理钛表面有利于钙磷盐的沉积.","authors":[{"authorName":"谭英","id":"f5a25a37-1ae4-40ec-8f01-9e62c9c677c6","originalAuthorName":"谭英"},{"authorName":"谭帼馨","id":"5ad00752-05ff-41bb-93d8-5f872625f782","originalAuthorName":"谭帼馨"},{"authorName":"宁成云","id":"e0cad23a-e42f-44e0-b903-1e94bf4f5c57","originalAuthorName":"宁成云"},{"authorName":"周蕾","id":"127d1b18-d383-400e-8aed-e22d4da79c42","originalAuthorName":"周蕾"},{"authorName":"于鹏","id":"d04eb979-21a3-45ad-8ff8-9e9d8b8af4e8","originalAuthorName":"于鹏"},{"authorName":"王航","id":"959f5395-981a-452e-8d39-ad4a23b7cbe3","originalAuthorName":"王航"},{"authorName":"陈晓峰","id":"a0386a7b-34d8-4028-b35d-461790389234","originalAuthorName":"陈晓峰"}],"doi":"","fpage":"2425","id":"998e61b9-a559-4e5a-b581-ddb63806a6d4","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e5ba813d-c84b-48a1-8338-c7806cda55a3","keyword":"钛纳米形貌","originalKeyword":"钛纳米形貌"},{"id":"c715c78b-8a79-44f4-aeb8-af1cdf80e2d7","keyword":"凝胶氧化层","originalKeyword":"凝胶氧化层"},{"id":"a6cb56e2-94f5-41ae-bf00-e113d98e41f7","keyword":"机理","originalKeyword":"机理"},{"id":"9fcdf69d-ccba-4a0e-8099-7848475b89d1","keyword":"化学氧化","originalKeyword":"化学氧化"}],"language":"zh","publisherId":"xyjsclygc201410024","title":"钛表面化学氧化法构建纳米凝胶层性能及机理研究","volume":"43","year":"2014"},{"abstractinfo":"借助X射线衍射仪(XRD)、扫描电镜(SEM)、电导率测试仪、覆层测厚仪、显微硬度仪、VSP电化学工作站和数控磨损试验机等分析手段,探究在硅酸盐电解液中加入不同含量的纳米TiO2对铸造铝铜合金微弧氧化陶瓷膜层微观结构、厚度、显微硬度、耐腐蚀性及耐磨性的影响.结果表明,硅酸盐电解液中加入的纳米TiO2参与并促进了微弧氧化反应,使得膜层的缺陷减少,致密度提高,膜层中的α-Al2O3含量增加,从而改善了铸造铝铜合金微弧氧化膜层的综合性能.当纳米TiO2的添加量为3g/L时,膜层的厚度为69 μm,显微硬度达510 HV,极化电阻Rp提高了23倍,摩擦因数较低(约为0.22),耐蚀性及耐磨性较佳.","authors":[{"authorName":"黄鑫","id":"37507b80-e60b-4343-8109-2e5cfc43a15e","originalAuthorName":"黄鑫"},{"authorName":"张晓燕","id":"766b9d3a-d338-48d6-a013-3a9ab1e027ca","originalAuthorName":"张晓燕"},{"authorName":"黄丹","id":"2d933851-4dd7-441f-8ff0-d343d255262e","originalAuthorName":"黄丹"},{"authorName":"吴德凤","id":"891e2ee6-c0a3-45c1-90f1-d5b87d8a5f1a","originalAuthorName":"吴德凤"}],"doi":"","fpage":"831","id":"a7c74c25-eac4-4501-a6cc-9d81e85542a0","issue":"19","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"df164e21-65f8-4a66-acad-2166399c5b4e","keyword":"铸造铝铜合金","originalKeyword":"铸造铝铜合金"},{"id":"aaba7b92-2bef-4a2b-94b7-95f02da8f266","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"8c44c134-2b4d-4085-a0d0-89a1e1cfd33d","keyword":"硅酸盐","originalKeyword":"硅酸盐"},{"id":"8c4657a7-fb9f-42ca-beb9-44409180be3d","keyword":"纳米二氧化钛","originalKeyword":"纳米二氧化钛"},{"id":"589c7cec-66e1-42de-8663-9660bb92c6f8","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"4226a455-01e8-4219-82cc-d8d1dd501fad","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"ddyts201419005","title":"纳米二氧化钛对铸造铝铜合金微弧氧化膜层性能的影响","volume":"33","year":"2014"},{"abstractinfo":"采用一种简便的方法制备了氧化锌插层蒙脱土纳米复合材料。首先将蒙脱土充分充水后进行冷冻,具有层状结构的蒙脱土充水后会发生膨胀,部分从块状的蒙脱土上剥离形成超薄的片层结构。然后通过可控的水热过程使氧化锌纳米粒子进入蒙脱土层间或覆盖于表面。结果表明,直径1~3 nm 的纳米氧化锌会插层于蒙脱土的层间,而直径达10~25 nm的纳米氧化锌则会镶嵌在蒙脱土表面。该纳米复合材料对模拟污染物甲基橙具有优异的光催化性能。","authors":[{"authorName":"刘俊莉","id":"3551c5fb-f695-459f-8c42-9a3b5dd32f08","originalAuthorName":"刘俊莉"},{"authorName":"赵燕茹","id":"fb79a923-fb4a-4633-b046-8d67fe01d72c","originalAuthorName":"赵燕茹"},{"authorName":"马建中","id":"73b22c74-9680-4db6-8b0e-dae1620abf04","originalAuthorName":"马建中"},{"authorName":"马歌","id":"e9482781-3cc3-4fd0-bd5a-4987d041c80b","originalAuthorName":"马歌"}],"doi":"10.11896/j.issn.1005-023X.2016.20.008","fpage":"34","id":"81ee00d7-64f9-4edd-a47e-9f48abbf65c4","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7b18639b-722a-4edc-b35f-9c31391e5bd8","keyword":"氧化锌纳米粒子","originalKeyword":"氧化锌纳米粒子"},{"id":"7ccedf87-2a3d-4dfc-aac4-94b073184c53","keyword":"蒙脱土剥离","originalKeyword":"蒙脱土剥离"},{"id":"beec2553-9614-45ca-8667-70d814c1210e","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"705b12d8-c69c-4fcb-82a6-0ab3e1063476","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"cldb201620008","title":"氧化锌插层蒙脱土纳米复合材料的制备及其光催化活性","volume":"30","year":"2016"}],"totalpage":6307,"totalrecord":63069}