{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以氨基磺酸为掺杂剂,过硫酸铵(APS)为引发剂,分别采用溶液插层和超声波插层的方法制备了聚苯胺包覆有机蒙脱土(OMMT)纳米复合材料.探讨了OMMT的用量对产物电阻的影响,并通过对产物电阻的测定将两种制备方法进行了比较.用XRD和FT-IR对纳米复合材料进行了表征.结果表明,经超声波插层聚合得到的纳米复合材料的压片电阻较好.","authors":[{"authorName":"冯辉霞","id":"7ad181f1-9acb-4b5c-a835-9311b2c4c334","originalAuthorName":"冯辉霞"},{"authorName":"邵亮","id":"1ba9d97c-67ec-4c4f-ad91-286e9d9420f0","originalAuthorName":"邵亮"},{"authorName":"王毅","id":"9c0058d0-70b9-4ffe-bc10-345d6cf06745","originalAuthorName":"王毅"},{"authorName":"张国宏","id":"c0856a79-0e90-45b3-ba91-5c0d350dca08","originalAuthorName":"张国宏"},{"authorName":"赵阳","id":"f44d8ab7-9a95-4f57-b9b7-711246a81362","originalAuthorName":"赵阳"},{"authorName":"邱建辉","id":"189d9a58-1e24-4e10-9f13-603a28559667","originalAuthorName":"邱建辉"}],"doi":"","fpage":"1731","id":"dec5b32b-8fc2-4ce3-84a3-2c7fc7563764","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2f7df331-6d5e-4e33-99f8-9c6c30a9a032","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"83094810-d07d-4742-89b7-5a63b67ffe4e","keyword":"导电纳米复合材料","originalKeyword":"导电纳米复合材料"},{"id":"de5f53a1-d162-4547-a602-fe35f89bbb2a","keyword":"有机蒙脱土","originalKeyword":"有机蒙脱土"},{"id":"e6bc2ab7-c556-46e5-947a-27bdd6a89824","keyword":"插层","originalKeyword":"插层"}],"language":"zh","publisherId":"gncl200710049","title":"氨基磺酸掺杂导电聚苯胺/OMMT纳米复合材料的制备与性能研究","volume":"38","year":"2007"},{"abstractinfo":"以高密度聚乙烯(HDPE)为基体,纳米石墨为导电填料,通过双辊混炼制备了具有良好压敏特性的导电纳米复合材料.研究了纳米石墨复合材料的电学性能及压敏性能,讨论了纳米石墨含量以及加压次数对导电复合材料压敏特性的影响.","authors":[{"authorName":"卢金荣","id":"cf04c71b-70f7-4b93-96ff-46f80cef94aa","originalAuthorName":"卢金荣"},{"authorName":"吴大军","id":"1a452d0f-2813-422d-8ed3-aa48864eab46","originalAuthorName":"吴大军"},{"authorName":"吴翠玲","id":"55b3cb8a-d2ef-48af-8de1-753a691914a6","originalAuthorName":"吴翠玲"},{"authorName":"陈国华","id":"a415ed65-a847-4b99-8453-d46bd1844840","originalAuthorName":"陈国华"}],"doi":"","fpage":"1411","id":"b79829cd-5816-4220-aaa9-230b7fa4f1fa","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ab221b03-38a1-4a4d-9c53-efbf95b699f5","keyword":"压敏","originalKeyword":"压敏"},{"id":"1bd68fd9-2a9c-4fc5-9d3e-2a4a43bfdcd8","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"4dcf7df3-d15f-4aa1-ace6-1cf1754f5a98","keyword":"纳米石墨","originalKeyword":"纳米石墨"}],"language":"zh","publisherId":"gncl2004z1396","title":"高密度聚乙烯/纳米石墨导电纳米复合材料压敏特性研究","volume":"35","year":"2004"},{"abstractinfo":"介绍了石墨烯/橡胶纳米复合材料的导电机理,综述了石墨烯及其衍生物、石墨烯的处理改性、与其他材料共混以及纳米导电复合材料的制备,论述了加工方法、硫化工艺以及温度、压力、频率、介质等因素对石墨烯/橡胶纳米复合材料导电性能的影响,并指出多组分橡胶/石墨烯复合体系及其“双逾渗”行为等都将是未来导电石墨烯/橡胶研究的重点.","authors":[{"authorName":"董慧民","id":"7bba79bb-b846-4937-a6fd-4affb3431d9f","originalAuthorName":"董慧民"},{"authorName":"钱黄海","id":"12d5450f-9995-48a9-acb7-eeff26c7f0f1","originalAuthorName":"钱黄海"},{"authorName":"程丽君","id":"27693957-2dbf-4d90-8678-c5be1777fc41","originalAuthorName":"程丽君"},{"authorName":"苏正涛","id":"c917cfb3-643c-49c4-bdd0-9a65c65fbc7c","originalAuthorName":"苏正涛"},{"authorName":"刘嘉","id":"4b9a5723-7a70-4db3-a3bf-526a66a05017","originalAuthorName":"刘嘉"},{"authorName":"王文志","id":"678000cc-e4b3-42d5-aaba-3c69d923eba3","originalAuthorName":"王文志"},{"authorName":"牟维琦","id":"40f1269b-b1b4-448b-a7c7-639ad339910c","originalAuthorName":"牟维琦"}],"doi":"10.11868/j.issn.1001-4381.2016.001332","fpage":"17","id":"0cb9d350-bfec-464a-a5c5-985ff04e1f4a","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"00a9b9ad-d86b-41ce-9447-1a8727f0ec89","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"4ef879b1-f574-43ac-b01c-210e2384de8f","keyword":"改性物","originalKeyword":"改性物"},{"id":"5aca8f03-e8dd-4940-83b4-438d0ebece46","keyword":"导电橡胶","originalKeyword":"导电橡胶"},{"id":"d0f1df67-5fb9-407c-b42f-2f26c24a5663","keyword":"导电机理","originalKeyword":"导电机理"},{"id":"c86240f9-b655-4bd0-b89b-1c53c2f55d22","keyword":"电性能","originalKeyword":"电性能"},{"id":"3ae7775d-f685-41a7-be5e-90b428081a12","keyword":"逾渗阈值","originalKeyword":"逾渗阈值"}],"language":"zh","publisherId":"clgc201703004","title":"石墨烯/橡胶导电纳米复合材料的研究进展","volume":"45","year":"2017"},{"abstractinfo":"用原位聚合法在凹凸棒土 (ATP)的表而包覆上5-磺基水杨酸(SSA)掺杂的聚苯胺)PANI),合成了SSA-PAN/ATP纳米复合材料,研究了SSA掺杂量,聚合温度,苯胺包覆率,聚合时间和过硫酸铵(APS)用量对复合材料体积电阻率的影响,结果表明:在m)An):m)APS):m)ATP):m)SSA)=1:2,45:3,33:2,08,聚合温度为20℃,聚合时问为4 h时,复合材料体积电阻率可达到3,5 Ω·cm,并通过TG-DTA,XRD,FTIR和TEM对该条件下制备的纳米复合材料进行了表征.","authors":[{"authorName":"吴凤芹","id":"98ba6953-3aba-4adb-9d0b-4a1932a54215","originalAuthorName":"吴凤芹"},{"authorName":"曾永斌","id":"3319d963-255b-4b09-b6c1-45a91275407d","originalAuthorName":"曾永斌"},{"authorName":"姚超","id":"533558be-3c51-49ad-be54-60f2da454f94","originalAuthorName":"姚超"},{"authorName":"李效棠","id":"3c572aa1-002b-46fe-84d2-e1416efcbb9a","originalAuthorName":"李效棠"},{"authorName":"刘建平","id":"9e3c807d-0252-404f-ae5c-1940fe21efa4","originalAuthorName":"刘建平"}],"doi":"10.3969/j.issn.0253-4312.2008.12.003","fpage":"7","id":"dae2756d-f252-4a05-8a3a-d1162cada70f","issue":"12","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"e34c5c23-41e7-4f88-b869-84941c4b1783","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"2ebe65d6-8ce0-44f0-b0ba-05be0e846c54","keyword":"凹凸棒土","originalKeyword":"凹凸棒土"},{"id":"144b4846-b83c-4d77-8226-63839d71293d","keyword":"原位聚合","originalKeyword":"原位聚合"},{"id":"505729e4-c372-4421-9485-15e099cd1b2a","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"32f652c9-5a4e-44fb-9d74-0d8256cc00af","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"}],"language":"zh","publisherId":"tlgy200812003","title":"SSA-PANI/ATP导电纳米复合材料的制备和表征","volume":"38","year":"2008"},{"abstractinfo":"以硬脂酸(SA)和铝酸酯(ACA)为改性剂,十二烷基苯磺酸钠(SDBS)为表面活性剂对多壁碳纳米管(MWCNTs)进行协同改性.然后以改性碳纳米管为填料,硅橡胶(SR)为基体,通过溶液共混方法制备了MWCNTs/SR复合材料,研究协同改性对MWCNTs/SR复合材料性能的影响.由SEM表征可知,协同改性后碳纳米管在复合材料中的分散性得到改善.通过TGA表征发现,碳纳米管经协同改性之后能显著提高复合材料的热稳定性,与未改性MWCNTs/硅橡胶复合材料相比,其分解温度(T(onset))由438.9℃提高到473.2℃.在100 Hz条件下,MWCNTs/SR复合材料的介电常数由270增至970,增幅高达259%.经协同改性制备的复合材料具有更高的介电常数,且介质损耗基本不变.","authors":[{"authorName":"李海","id":"18d3d99b-6a1a-45d7-9a88-1f845a87bb0b","originalAuthorName":"李海"},{"authorName":"观姗姗","id":"7d8cb569-3138-4492-8fe5-2652d42d9aef","originalAuthorName":"观姗姗"},{"authorName":"赵树高","id":"11ed7a7e-9425-4cd1-b9d1-9ee6aa12e5fe","originalAuthorName":"赵树高"},{"authorName":"Guo Laina","id":"863e2dc3-3cf0-462e-9893-3a4c62cc9eff","originalAuthorName":"Guo Laina"}],"doi":"10.16790/j.cnki.1009-9239.im.2017.02.004","fpage":"18","id":"d8da861b-a841-4b23-a2ae-98f9f1e05091","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"e85c56a9-9a50-4c25-a713-cf14421aa606","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"5500abf1-8126-4e1e-9ea3-a6fa16913d24","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"eea64917-404e-489e-b417-8773de9723c0","keyword":"溶液共混","originalKeyword":"溶液共混"},{"id":"57319cc6-91af-45ce-acf7-e0db101903dd","keyword":"协同改性","originalKeyword":"协同改性"},{"id":"2036d075-4b2f-442b-bd91-fa35ef229ca2","keyword":"介电常数","originalKeyword":"介电常数"}],"language":"zh","publisherId":"jycltx201702004","title":"多壁碳纳米管协同改性及高介电纳米复合材料的制备","volume":"50","year":"2017"},{"abstractinfo":"对近年来有关铁电纳米粉体、纳米复合材料、以及纳米陶瓷的制备,结构和性能进行了介绍.对由于粒子尺寸减小引起的结构和性能的改变及其相关机理进行了讨论.透明铁电纳米复合材料可望在光学存储、光学计算等光学器件中得到应用.而纳米陶瓷由于介电特性、耐电压、抗老化、机械强度等性能的提高,因而可以广泛用于改进现有电容器材料的性能,获得性能更加优良的器件.","authors":[{"authorName":"鲁圣国","id":"8080f454-38f3-430b-b24e-3d0e10357cc0","originalAuthorName":"鲁圣国"},{"authorName":"李标荣","id":"1bd5c55b-dea4-43ae-be82-54c94bfacfa6","originalAuthorName":"李标荣"},{"authorName":"麦炽良","id":"af0d5ca6-472f-4992-ad71-5da3d92ccc58","originalAuthorName":"麦炽良"},{"authorName":"黄健洪","id":"d0caaddc-f22b-4d9b-a462-40ccbbebf954","originalAuthorName":"黄健洪"}],"categoryName":"|","doi":"","fpage":"1231","id":"74e2078a-b38b-4c22-b24e-4808fa49e490","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ca1dad8d-a052-4b98-9c06-2791aa068278","keyword":"铁电体","originalKeyword":"铁电体"},{"id":"4f66d6ac-c4c7-4307-90e5-9a0122280e59","keyword":" nanopowder","originalKeyword":" nanopowder"},{"id":"9b9c3473-8c3e-4c9b-b345-86638053f19d","keyword":" nanoceramic","originalKeyword":" nanoceramic"},{"id":"013dd457-4bb2-4eca-8941-939a3c6fadfb","keyword":" nanocomposite","originalKeyword":" nanocomposite"},{"id":"0b0edca1-6aa5-4f7e-a82f-d8a69238fccf","keyword":" size effect","originalKeyword":" size effect"},{"id":"d016e222-49a1-410a-9e51-86f67f8a0a67","keyword":" dielectric properties","originalKeyword":" dielectric properties"},{"id":"f68b7548-77c5-42bf-8a7a-ad689fcae7df","keyword":" photoluminescence spectrum","originalKeyword":" photoluminescence spectrum"}],"language":"zh","publisherId":"1000-324X_2004_6_18","title":"铁电纳米材料的制备、性能和应用前景","volume":"19","year":"2004"},{"abstractinfo":"对近年来有关铁电纳米粉体、纳米复合材料、以及纳米陶瓷的制备,结构和性能进行了介绍.对由于粒子尺寸减小引起的结构和性能的改变及其相关机理进行了讨论.透明铁电纳米复合材料可望在光学存储、光学计算等光学器件中得到应用.而纳米陶瓷由于介电特性、耐电压、抗老化、机械强度等性能的提高,因而可以广泛用于改进现有电容器材料的性能,获得性能更加优良的器件.","authors":[{"authorName":"鲁圣国","id":"0b7135f2-059d-47e4-b19d-7508bf711e99","originalAuthorName":"鲁圣国"},{"authorName":"李标荣","id":"a192e759-370b-4524-acf8-6f1badbf41c0","originalAuthorName":"李标荣"},{"authorName":"麦炽良","id":"f7bee50b-4083-41bc-8238-3d1d486c82da","originalAuthorName":"麦炽良"},{"authorName":"黄健洪","id":"4b03f675-9002-4fc2-8f36-61e051b9e6f2","originalAuthorName":"黄健洪"}],"doi":"10.3321/j.issn:1000-324X.2004.06.003","fpage":"1231","id":"3971bd67-3b6c-41e6-8e38-ddab55334715","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"8f26e52e-6d09-4482-8adf-d73fe185c6b6","keyword":"铁电体","originalKeyword":"铁电体"},{"id":"25683078-d4e9-4a1d-8d89-c8a2b2fc623b","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"65430dd6-9ca8-4363-b526-cfd320007007","keyword":"纳米陶瓷","originalKeyword":"纳米陶瓷"},{"id":"71799777-15f2-48b9-b6f9-a7deaa998d78","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"b52e7086-bf64-4616-95a3-ef37b93059c2","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"31f7a993-326b-4f4c-a11b-83615eb94d72","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"692dfd51-f040-40a8-9a8b-b451d7adb9bf","keyword":"荧光光谱","originalKeyword":"荧光光谱"}],"language":"zh","publisherId":"wjclxb200406003","title":"铁电纳米材料的制备、性能和应用前景","volume":"19","year":"2004"},{"abstractinfo":"p型填充方钴矿材料的力学性能相对于n型较差,成为方钴矿热电器件集成设计的薄弱环节.本工作利用氧化石墨烯(GO)良好的润湿性和亲水性,通过液相分散实现了GO对Ce0.85Fe3CoSb12基体颗粒的网状包覆与均匀分散.利用放电等离子烧结技术同时实现了致密化和对GO的原位还原,获得了2~5 nm厚还原氧化石墨烯(rGO)三维网状包覆的Ce0.85Fe3CoSb12基纳米复合材料.该三维网状结构利用桥接作用增加了裂纹扩展额外功,实现了对基体材料的增强增韧.当rGO含量为2.8vo1%时,Ce0.85Fe3CoSb12/rGO复合材料的抗弯强度和断裂韧性相对于纯基体材料分别提高40%和33%.但进一步提高rGO含量会增加基体晶界处的rGO厚度,进而弱化其增强增韧效果.","authors":[{"authorName":"宗鹏安","id":"03287c95-a439-4700-91d5-de7d32d0b0fe","originalAuthorName":"宗鹏安"},{"authorName":"陈立东","id":"da585633-5b8c-42dd-8bcb-78c66468fb67","originalAuthorName":"陈立东"}],"doi":"10.15541/jim20160220","fpage":"33","id":"cacde75c-8e10-4c05-b726-af8a76fb4f2b","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1a58c22e-18a1-4a90-9781-430b552de959","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"283745e7-d300-4a5e-8b11-a18659b580d2","keyword":"方钴矿","originalKeyword":"方钴矿"},{"id":"87e12303-da5f-48a8-850b-5998af937afe","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"385e156c-244a-4699-a954-6d65f4615f4f","keyword":"纳米复合","originalKeyword":"纳米复合"},{"id":"6e75c2b8-c8d3-4680-bc2e-1874fc8fbd4b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"wjclxb201701005","title":"Ce0.85Fe3CoSb12/rGO热电纳米复合材料的制备及其力学性能","volume":"32","year":"2017"},{"abstractinfo":"用溶液插层(SI)和母料熔体混合(MMM)方法制备了聚乙烯(PE)/马来酸酐接枝聚乙烯(gPE)/膨胀石墨(EG)导电纳米复合材料,以直接熔体混合(DMM)法制备的PE/gPE/EG、PE/EG复合材料作对照,通过电导率(σ)测试,TEM、SEM、OM观察和DSC分析,研究了制备方法、EG体积或质量分数(φ或fm)和gPE质量含量(Cg)对复合材料结构和σ的影响.结果表明,SI、MMM、DMM法制备的Cg/m=1.5复合材料和PE/EG对照材料的逾渗阈值φc分别为2.19%、3.81%、4.68%和5.35%;当Cg/fm由1增至4时,MMM、DMM法制备的fm=9%复合材料的σ分别跃升12和8个数量级;产生这些差异和现象的原因,可根据复合材料中EG分散相形态和内部微结构随制备方法、φ和C/fm的变化,按逾渗理论来解释.","authors":[{"authorName":"左胜武","id":"c10b9d02-e7c6-4d5f-9e91-bd75b086098c","originalAuthorName":"左胜武"},{"authorName":"沈经纬","id":"9e4d79c8-e0a7-4d1a-9348-5d1b8f26ba59","originalAuthorName":"沈经纬"},{"authorName":"侯静","id":"473f06dc-a8ec-4046-84ac-51ea3e5570b5","originalAuthorName":"侯静"}],"doi":"10.3321/j.issn:1000-3851.2005.01.004","fpage":"15","id":"0bc9bca3-c5f0-4587-8541-eae2e2fe9f4c","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8ca87452-7035-4e61-a6b8-ecc9fcdd6a02","keyword":"膨胀石墨","originalKeyword":"膨胀石墨"},{"id":"31961a15-430b-49bf-8aea-f24aebe52de8","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"e6473fec-6355-4523-9e9a-f4e01c00725f","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"fd0b909a-8cc1-4cbe-aad0-4a8bed4b32b7","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"b6233f1b-6fc3-428c-9190-b2db28126241","keyword":"结构","originalKeyword":"结构"},{"id":"e6310766-5d5f-4e82-8e83-7553166f0bc3","keyword":"导电性","originalKeyword":"导电性"}],"language":"zh","publisherId":"fhclxb200501004","title":"聚乙烯/石墨纳米复合材料的制备、结构和导电性","volume":"22","year":"2005"},{"abstractinfo":"随着热电材料制备技术和性能研究的发展,热电纳米材料越来越受到人们的关注.介绍了几种有应用潜能的热电纳米材料的研究进展,指出了有关热电纳米材料研究存在的主要问题和其可能的发展方向.","authors":[{"authorName":"贺香荣","id":"cbdc57bb-8c14-4b0f-b4b7-a8c937850d91","originalAuthorName":"贺香荣"},{"authorName":"蔡克峰","id":"b7930e33-7c60-4af6-a1cd-e8288d5e3c71","originalAuthorName":"蔡克峰"}],"doi":"","fpage":"13","id":"e9e9e702-5280-4dac-95fd-c1c8003ef75f","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"41827573-dad3-44c9-b814-ddaf081b453f","keyword":"热电纳米材料","originalKeyword":"热电纳米材料"},{"id":"92b1e9f2-54c2-4834-9052-c3b33f329d2b","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"a7248e3f-3d8a-447a-bb0a-6b7585cca962","keyword":"超晶格","originalKeyword":"超晶格"},{"id":"8826dcc2-96d0-45d0-b216-6b033c47f517","keyword":"制备","originalKeyword":"制备"},{"id":"a7b5a739-36da-41ac-9837-90d014dd67b9","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"cldb200608004","title":"热电纳米材料的研究进展","volume":"20","year":"2006"}],"totalpage":8081,"totalrecord":80802}