{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了射流磨削抛光实验装置的组成及实验过程,通过射流磨削抛光钛合金(TC4)试件,取得了磨削抛光的工艺参数,为异型曲面工件的表面抛光探索了一种有效方法.","authors":[{"authorName":"杨乾华","id":"9c68c604-1d79-41a7-aca8-51b4b793b376","originalAuthorName":"杨乾华"},{"authorName":"刘继光","id":"92d9c6b8-b5a5-4273-b166-1226c2847820","originalAuthorName":"刘继光"},{"authorName":"徐慧","id":"9e19afcf-d7ce-4bc5-983b-a058ef512f50","originalAuthorName":"徐慧"}],"doi":"10.3969/j.issn.1009-9964.2003.02.006","fpage":"22","id":"fcf5316f-8887-4c2d-9982-01f78400188d","issue":"2","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"6ca9b066-b7aa-4106-aed4-ac5b35ec46a2","keyword":"射流","originalKeyword":"磨液射流"},{"id":"70480e12-ab46-4976-84b6-993e38dc479a","keyword":"冲蚀","originalKeyword":"冲蚀"},{"id":"4c706342-462c-46d6-9654-f67fa7c18def","keyword":"抛光","originalKeyword":"抛光"},{"id":"f9bf3322-0597-4d60-b6fc-d224913a5710","keyword":"钛合金","originalKeyword":"钛合金"}],"language":"zh","publisherId":"tgyjz200302006","title":"射流磨削抛光钛合金的试验研究","volume":"","year":"2003"},{"abstractinfo":"目的 解决传统水射流加工中的法向力冲击损伤、粒束发散、加工效率及能量利用效率问题.方法 提出一种新型加工方式,即强约束射流抛光.在水射流加工的喷嘴末端施加一个约束力,使抛光以较高的速度并以与工件表面相切的方向喷射而出.采用仿真分析与实验探究相结合的方式,以实际加工条件为仿真参数,应用Fluent仿真软件分析了粒直径及粒浓度对加工的影响,并得到相应的压力曲线.在仿真分析的基础上,实验验证仿真结果的可靠性及实际加工的可行性.结果 由仿真结果可知,1500目直径的粒相对其他四种直径的粒,颗粒对工件表面的压力最大,达到0.185 MPa.当粒质量分数为15%时,相对其他三种粒浓度,颗粒对工件表面的压力最大,达到0.19 MPa.因而,1500目粒、15%的粒浓度为加工的最佳理论参数.以仿真结果为参考实验条件,结果表明,在8h内,工件表面粗糙度下降了239 nm,材料去除率达到6.9 mg/h.结论 强约束射流加工方式可在工件表面形成较高速度的射流,提高加工效率.在短时间内工件表面粗糙度的改善及工件质量的下降,证明了此加工方式的有效性.","authors":[{"authorName":"褚聪","id":"74297a5c-acf5-45e2-b3ce-0000992a8d13","originalAuthorName":"褚聪"},{"authorName":"戴勇","id":"d9664626-3bff-48a3-b476-84a833659b2a","originalAuthorName":"戴勇"},{"authorName":"沈明","id":"eece7e00-b711-45b7-82f2-e47a393cfdb6","originalAuthorName":"沈明"},{"authorName":"葛满","id":"b000e83e-3a1e-4c65-bcae-e6406a804cf0","originalAuthorName":"葛满"},{"authorName":"叶见领","id":"08664bd0-6932-49a6-b394-3c2bf089b40d","originalAuthorName":"叶见领"},{"authorName":"袁巧玲","id":"5ea9ab66-860c-4a4f-8eed-21bb1b9bb94a","originalAuthorName":"袁巧玲"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.06.030","fpage":"198","id":"0c0d6a7f-fdc0-4598-9488-1b21485df0cc","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"e5a76468-6382-42cc-b50f-459aae2b7ea7","keyword":"强约束","originalKeyword":"强约束"},{"id":"9bdbf95d-cbed-490d-8399-156e86f80819","keyword":"水射流","originalKeyword":"水射流"},{"id":"94b901e8-e191-40c3-bccb-a59448c80b3d","keyword":"抛光","originalKeyword":"抛光"},{"id":"66f86682-5968-4076-bb17-87db3d3e89cc","keyword":"仿真","originalKeyword":"仿真"},{"id":"4212a192-7eb8-47f0-b5cd-afb8491cea0b","keyword":"Fluent","originalKeyword":"Fluent"},{"id":"b1f4f484-4146-48d5-acbc-7d9cbaf071fd","keyword":"光学玻璃","originalKeyword":"光学玻璃"}],"language":"zh","publisherId":"bmjs201606030","title":"基于Fluent仿真的强约束射流抛光特性","volume":"45","year":"2016"},{"abstractinfo":"对不同液体在空气中湍动雾化射流的气两相流场进行了数值模拟.建立了一次雾化的一维模型,分析了粘度、表面张力和气质量流量比对雾粒径的影响趋势,采用基于粒子追踪法的二次雾化三维模型,分析了物性和各种工况对雾粒径沿轴向分布的影响程度.计算结果和已公开发表的实验数据进行比对,得到了较好的吻合,在此基础上,分析了影响气泡雾化喷嘴雾化质量的主要因素.","authors":[{"authorName":"钱丽娟","id":"39012f1d-f100-460f-ba4e-5dc64b933a18","originalAuthorName":"钱丽娟"},{"authorName":"熊红兵","id":"7d70b341-6787-4898-9032-579f095dc9f6","originalAuthorName":"熊红兵"},{"authorName":"林建忠","id":"9ab8913a-cffa-40c4-876b-a2c57051c719","originalAuthorName":"林建忠"}],"doi":"","fpage":"246","id":"c66ad3e6-97f0-49c7-9dd0-165d65ea825f","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"93f88f39-cc06-43f0-a5d6-f6927fc91fcf","keyword":"粘度","originalKeyword":"粘度"},{"id":"83051e75-1468-4fc1-b970-241f10262540","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"cb46210d-1f7b-4da3-a4c2-95fd5c66508a","keyword":"泡状雾化","originalKeyword":"泡状雾化"},{"id":"76b8f98e-5d34-4571-a7cf-21f406a7876f","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200802017","title":"液体物性对雾化射流雾粒径的影响","volume":"29","year":"2008"},{"abstractinfo":"本文实验研究了水下超声速气体射流两相复杂流动。利用高速摄影仪和电子相机分别实时记录了过膨胀超声速工况水下气体射流的喷射状态和整体形貌,显示了不同工况水下高速气体垂直射流的演化过程和动态不稳定性形貌。研究结果表明:在射流的初始段存在与射流内部复杂波系相关的激波反馈特性,激波反馈特性发生之前存在能量积聚的高频低幅的胀鼓过程,二者均随机发生;在射流的主体段,在气水掺混和卷吸大规模能量交换作用下,射流呈现随机的偏摆效应,并且偏摆受环境流场影响明显。","authors":[{"authorName":"郭强","id":"122c0435-aa5b-4418-95c9-81fdad5f46ef","originalAuthorName":"郭强"},{"authorName":"施红辉","id":"96f315a2-2e51-4737-836c-bf0894393990","originalAuthorName":"施红辉"},{"authorName":"王超","id":"40f5ff15-c7a7-4511-8d58-42716e25892e","originalAuthorName":"王超"},{"authorName":"陈帅","id":"c8f2d171-761c-4621-8503-7be311d1ef87","originalAuthorName":"陈帅"},{"authorName":"董若凌","id":"47e38f8f-9c2f-4434-9f17-0cfb5dcb7c6f","originalAuthorName":"董若凌"},{"authorName":"章利特","id":"aa1b75bc-040a-43ae-a179-4ac317bdc285","originalAuthorName":"章利特"},{"authorName":"贾会霞","id":"2b5e1bf7-47b2-4402-8c00-3e10a1c74532","originalAuthorName":"贾会霞"}],"doi":"","fpage":"809","id":"281ce8e4-8e0e-4c66-8599-46ec0192bef0","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b150382c-b297-4742-a90c-9fc9eab45b4f","keyword":"水下超声速射流","originalKeyword":"水下超声速射流"},{"id":"ab6f568f-ac4b-417a-94f4-238e83dae870","keyword":"实验研究","originalKeyword":"实验研究"},{"id":"065a3f16-e6cd-4862-bc5a-a93df803f915","keyword":"流动不稳定性","originalKeyword":"流动不稳定性"},{"id":"7134b3b1-8785-4a36-b4f4-964896a24874","keyword":"激波反馈","originalKeyword":"激波反馈"}],"language":"zh","publisherId":"gcrwlxb201205020","title":"水下超声速气体射流两相复杂流动研究","volume":"33","year":"2012"},{"abstractinfo":"合成了一种高级精,并对其性能进行了测试,结果表明:该精具有良好的润滑、冷却、防锈和清洗性能;具有良好的化学稳定性,不易变质发臭;使用安全,对环境无污染.","authors":[{"authorName":"赵会明","id":"0dcb594f-0b68-4793-878b-a3292bd2dad3","originalAuthorName":"赵会明"},{"authorName":"母泽亮","id":"145a834e-0baa-4441-a93b-349dce6ae419","originalAuthorName":"母泽亮"}],"doi":"10.3969/j.issn.1001-3660.2001.05.019","fpage":"57","id":"8fb72371-d662-49cb-b33e-a722e301134d","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"2274b895-6b74-49bd-ad87-a4f710e2fb86","keyword":"精","originalKeyword":"精磨液"},{"id":"a52be3dc-1071-42af-9d6d-4d0d2b2a353a","keyword":"研制:应用","originalKeyword":"研制:应用"}],"language":"zh","publisherId":"bmjs200105019","title":"高级精的研制与应用","volume":"30","year":"2001"},{"abstractinfo":"利用高速CCD成像技术,本文研究了梯形横截面微通道内的气泡喷射流动.通过调节同向流动时空气和水流量,研究了气泡形成的大小和频率等变化特性;以及微通道内的流型变化.实验结果表明,气泡喷射频率随空气流量的增加而增大,同时随水流量的增加而上升,且上升幅度渐趋平缓.","authors":[{"authorName":"全晓军","id":"5d4f26c3-8927-4fe8-8d40-5289282541bb","originalAuthorName":"全晓军"},{"authorName":"陈钢","id":"7b724540-b3b1-4689-9b1a-f85307223bb5","originalAuthorName":"陈钢"},{"authorName":"郑平","id":"80088e93-17a6-48ff-afe8-bb788f517c36","originalAuthorName":"郑平"}],"doi":"","fpage":"309","id":"d74228b0-b3ef-4d51-8273-e0ee031e1d79","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8fa34d12-c88f-4a19-a53b-fd604c9927f8","keyword":"微通道","originalKeyword":"微通道"},{"id":"a621be5e-ede1-4dcc-8bf8-a3cf44ac4228","keyword":"气泡射流","originalKeyword":"气泡射流"},{"id":"348a2c2f-16cf-419a-ac1d-a40db1b685a5","keyword":"频率","originalKeyword":"频率"}],"language":"zh","publisherId":"gcrwlxb200802034","title":"微通道气同向流动中气泡射流特性","volume":"29","year":"2008"},{"abstractinfo":"滴的演化作为雾化的最基本形式,研究其动力学特性为深入探究静电雾化机理提供了重要的理论依据.静电雾化的重要形式之一是锥射流,研究其形成过程及电动力学特性对于探讨分析多股射流等其他复杂多相流具有重要意义.利用Level-set耦合VOF方法,在假设流体不可压缩并做平流运动的情况下,对单滴生成过程以及静电场下锥射流的形成进行了数值模拟.模拟结果与实验结果较好吻合,验证了Level-set耦合VOF方法模拟两相流问题的有效性.同时分析了滴生成过程及锥射流状态下的速度场等分布,为模拟多场耦合等复杂条件下的滴二次雾化奠定了基础.","authors":[{"authorName":"王军锋","id":"b3dafa9a-4f04-4572-8432-9cc0d777d7ea","originalAuthorName":"王军锋"},{"authorName":"左子文","id":"29328b5b-ad2c-497d-9898-bda0fa66faed","originalAuthorName":"左子文"},{"authorName":"霍元平","id":"a103fdc0-da40-4dec-9964-763008de521c","originalAuthorName":"霍元平"}],"doi":"","fpage":"667","id":"161c0e28-6077-42b5-922b-e4d6abf0d33c","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3cca16cf-5f17-47da-9884-8d37598c7bdd","keyword":"Level-set方法","originalKeyword":"Level-set方法"},{"id":"db08152f-7752-450d-b6f6-7655ad9d97ec","keyword":"VOF方法","originalKeyword":"VOF方法"},{"id":"89565a90-2e86-4173-8aac-6e3b40afebc0","keyword":"滴形成","originalKeyword":"液滴形成"},{"id":"b9c32d0d-5ea2-4712-bca7-460dd8da0ef3","keyword":"静电场","originalKeyword":"静电场"},{"id":"592b1018-b805-4aea-9a9f-766844a8e9c5","keyword":"锥射流","originalKeyword":"锥射流"}],"language":"zh","publisherId":"gcrwlxb201304019","title":"滴演化及静电场下锥射流形成的数值模拟","volume":"34","year":"2013"},{"abstractinfo":"为考察溶液注入热等离子体喷涂过程中喷雾参数对涂层质量的影响,本文建立了溶液滴在热等离子体中运动蒸发的数学模型。模拟了滴在不同参数下的运动和蒸发的过程,考虑了滴、热等离子气流及滴表面气体混合物随温度及组分的物性变化以及斯蒂芬流的影响,得到滴的运动轨迹,蒸发速率以及半径和表面温度的变化。结果表明在一定范围内增大滴的尺寸或提高入射速度,使滴获得较大的初始动量,可使滴进入射流高温区得到充分加热强化蒸发。","authors":[{"authorName":"胡媛","id":"0ed6aa9a-4866-4d96-8f30-348bde3b3766","originalAuthorName":"胡媛"},{"authorName":"单彦广","id":"bd1b47b7-ecdf-4d9f-b6a1-c2dc8af06a8b","originalAuthorName":"单彦广"}],"doi":"","fpage":"1545","id":"661c2816-3ba2-48b2-89a6-cf7806e34456","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1e59ee26-b275-415d-925b-802082119437","keyword":"滴蒸发","originalKeyword":"液滴蒸发"},{"id":"4e1d06cb-a9ca-4ee2-8458-b2a555722d18","keyword":"喷雾参数","originalKeyword":"喷雾参数"},{"id":"fceee4d1-76a2-49d4-873f-74eadf5f1074","keyword":"溶液注入热等离子体喷涂","originalKeyword":"溶液注入热等离子体喷涂"},{"id":"9aa3eb33-5ae0-4eb8-99f7-df2cf6f1bee1","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201109028","title":"溶液滴在热等离子体射流中的运动和蒸发","volume":"32","year":"2011"},{"abstractinfo":"为研究结晶器内面波动特性的规律,防止连铸坯卷渣,提高铸坯质量,利用紊流淹没射流理论建立了浇注过程中钢液流股撞击结晶器窄边速度和撞击点位置理论模型,推导出面波动指数的解析公式;通过与试验结果对比,验证了该理论模型的预测结果;利用数值仿真模拟1000 mm×130 mm板坯连铸结晶器在不同面波动指数下的面波动情况.计算结果表明,该理论模型结论与试验结论偏差为-4%~2.5%,可较好地评价结晶器内面波动的剧烈程度,该型号板坯连铸结晶器最佳拉速为1.4 m/min.","authors":[{"authorName":"金昕","id":"201fec9a-6ac8-4f38-8aff-a3744af567d7","originalAuthorName":"金昕"},{"authorName":"孟子尧","id":"c3f2c1b9-6949-4c6a-a41a-1b9eade46b0c","originalAuthorName":"孟子尧"},{"authorName":"任廷志","id":"c20c787d-e061-49fc-9b98-d8e7c7a2b13e","originalAuthorName":"任廷志"},{"authorName":"刘志伟","id":"4902fc9b-1579-439a-82df-62eeebe52bd9","originalAuthorName":"刘志伟"},{"authorName":"李杰","id":"de5eb929-69e8-47de-95c0-ee94335aebf5","originalAuthorName":"李杰"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160253","fpage":"42","id":"d7d5a93b-5c1a-4514-8cf9-144cde2b862e","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7b453079-28fd-45ad-8417-1664502b0a1e","keyword":"连铸结晶器","originalKeyword":"连铸结晶器"},{"id":"86b04a09-d867-47b9-9c6f-6d838bb51280","keyword":"面波动指数","originalKeyword":"液面波动指数"},{"id":"ccc70962-dd28-451d-bf7b-1342dd6d5976","keyword":"F数","originalKeyword":"F数"},{"id":"476346c4-1bf4-4405-97d0-b3b275ad3608","keyword":"紊流淹没射流","originalKeyword":"紊流淹没射流"}],"language":"zh","publisherId":"gt201703009","title":"基于紊流射流理论的连铸结晶器面波动","volume":"52","year":"2017"},{"abstractinfo":"对水在空气中湍动雾化射流的气两相流场进行了数值模拟.其中,气体流场采用k-ε湍流模型进行模拟,给出了载气轴向速度的分布情况.对喷雾粒子的运动采用颗粒轨道法,建立粒子破碎和碰撞的数值模型,研究了雾粒径在不同工况下沿轴向的变化趋势.数值模拟结果与实验结果在多种气比下进行了比较,两者吻合较好.同时,分析了初始粒径和粒子总数及喷嘴尺寸对雾粒径变化趋势的影响,讨论了有助于粒径均匀分布的条件.","authors":[{"authorName":"钱丽娟","id":"3a7c32f7-5f5f-4e21-970e-0bffcfb06eea","originalAuthorName":"钱丽娟"},{"authorName":"熊红兵","id":"39ef5061-84ae-4afe-9620-77d60671f7f2","originalAuthorName":"熊红兵"},{"authorName":"林建忠","id":"7f67ae06-70c4-4206-a1ec-434d4483892d","originalAuthorName":"林建忠"}],"doi":"","fpage":"251","id":"1fda28bc-a032-4b2e-881f-43c52593be6f","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"408780dc-68c4-4513-b8f4-6031baa8c978","keyword":"雾化","originalKeyword":"雾化"},{"id":"495f10ac-41d7-4dd5-8bbd-7b37e0e80e0e","keyword":"雾粒径","originalKeyword":"液雾粒径"},{"id":"bb8649a0-37dd-4c57-8f8b-bfa075293ee9","keyword":"气两相流","originalKeyword":"气液两相流"},{"id":"260ba6b5-d153-4ee8-a8b3-a5346f43d867","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200702022","title":"湍动雾化射流雾粒径分布的数值模拟","volume":"28","year":"2007"}],"totalpage":2339,"totalrecord":23382}