{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用顶空吸附萃取法(headspace sorptive extraction,HSSE)建立了小麦中部分风味物质的分析方法.以硅橡胶为原料,采用溶胶-热空气硫化法,在模具中定型制得硅橡胶萃取棒.萃取棒的硅橡胶层体积约为87 μL,热稳定性好,耐热温度达到390℃.萃取棒吸附的风味物质经自制热解吸装置热脱附,被吹扫进入气相色谱仪进行分析.考察了萃取温度及时间、相比、热解吸条件对该方法萃取效率的影响.在优化条件下分析小麦粉标准样品,结果表明:方法的线性关系良好(r>0.997 9),检出限为0.09 ~1.00 μg/kg,标准物质的平均添加回收率为95% ~121%,相对标准偏差在2.2%~7.8%之间.对小麦粉实际样品进行分析,采用外标法得到了7种风味物质的绝对含量.该方法简便快捷,检出限低,适用于小麦中风味物质的快速定量分析.","authors":[{"authorName":"王同波","id":"4cb6416f-60dd-43a8-ba69-c4f360088c0b","originalAuthorName":"王同波"},{"authorName":"闫潇","id":"e3c6596c-5bf5-444d-b8a7-45ba606567f5","originalAuthorName":"闫潇"},{"authorName":"兰孝征","id":"48a9b76d-d008-4342-88a5-3304d5f27141","originalAuthorName":"兰孝征"}],"doi":"10.3724/SP.J.1123.2012.12041","fpage":"467","id":"e8a67558-53aa-402d-854b-5eb9be78d748","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"e8c7fb32-c9a1-4c24-be3a-8151953fc95f","keyword":"顶空吸附萃取","originalKeyword":"顶空吸附萃取"},{"id":"0432fae1-bd29-461a-be9e-b7f376556f92","keyword":"溶胶-热空气硫化法","originalKeyword":"溶胶-热空气硫化法"},{"id":"07f427a7-70c5-4ed8-a1ee-64b29b0e3d1b","keyword":"硅橡胶萃取棒","originalKeyword":"硅橡胶萃取棒"},{"id":"4107f375-011c-4047-aad6-ef87ff1a6b3c","keyword":"气相色谱","originalKeyword":"气相色谱"},{"id":"b810ed50-6ee9-4232-931c-bb6c2bcbe980","keyword":"风味物质","originalKeyword":"风味物质"},{"id":"42a32b07-73a0-472e-8101-c49dfdd2422b","keyword":"小麦","originalKeyword":"小麦"}],"language":"zh","publisherId":"sp201305013","title":"顶空吸附萃取-气相色谱法分析小麦中部分风味物质","volume":"31","year":"2013"},{"abstractinfo":"对光伏组件封装EVA胶膜进行了热空气老化研究.将EVA胶膜置于不同温度下进行热空气老化,测试了老化过程中EVA的抗拉强度、透光率和黄度指数,采用FT - IR、GPC、DSC技术对老化后的EVA进行分析.结果表明,随着老化的进行,EVA的抗拉强度快速下降,老化温度越高,抗拉强度下降越快,甚至完全失效,失去弹性;老化过程中EVA会变黄,透光率逐渐下降;老化失效原因主要是发生氧化降解,EVA的交联网状结构破坏,进而失去力学性能.","authors":[{"authorName":"张增明","id":"073f9dce-16e4-4b46-a83d-92ba3f1bddd3","originalAuthorName":"张增明"},{"authorName":"彭丽霞","id":"f469efb9-4b6c-426e-b71e-ffde31770204","originalAuthorName":"彭丽霞"},{"authorName":"吕瑞瑞","id":"33777278-2ab5-4ec0-9d01-f634de47aafc","originalAuthorName":"吕瑞瑞"},{"authorName":"唐景","id":"620fe9a9-8772-45dc-bbcc-23bdc5117d02","originalAuthorName":"唐景"},{"authorName":"傅冬华","id":"d74718ce-b4a9-4a16-b92e-12f84c41a0d0","originalAuthorName":"傅冬华"}],"doi":"10.3969/j.issn.1671-5381.2012.01.005","fpage":"16","id":"1308b94c-be67-48a5-a86b-1c5faf4a899b","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"128af9e8-1468-46e1-977c-41d25d9e5843","keyword":"EVA","originalKeyword":"EVA"},{"id":"6087bd6b-a3b9-4187-bee3-d8a1d6fa5574","keyword":"热老化","originalKeyword":"热老化"},{"id":"65dd02a6-1877-488d-a8ef-8a3c0ac77cb6","keyword":"抗拉强度","originalKeyword":"抗拉强度"},{"id":"963db032-512e-4958-a078-7c2e52bbab78","keyword":"透光率","originalKeyword":"透光率"},{"id":"413d70c7-592e-41fa-aabe-38dfd1da46c8","keyword":"光伏","originalKeyword":"光伏"}],"language":"zh","publisherId":"hccllhyyy201201005","title":"光伏组件封装EVA的热空气老化研究","volume":"41","year":"2012"},{"abstractinfo":"为探讨利用热空气中的废热用于溶液再生,对热空气用于氯化锂水溶液的顺流再生过程进行了实验研究,通过加热空气获得40~60℃热空气来模拟不同品位的废热空气,结合NTU-Le模型和实验数据计算得到了溶液再生过程耦合传热传质系数,分析了空气流量、空气温度和溶液流量对热空气用于溶液再生过程传热传质系数的影响,并对冷凝器排热之类的热空气用于溶液再生的热利用效率进行了分析,获得了溶液浓度、空气温度和流量对热空气用于溶液再生过程再生热效率的影响.","authors":[{"authorName":"殷勇高","id":"4cae8a38-0209-4b0a-8c88-854c2939bb18","originalAuthorName":"殷勇高"},{"authorName":"潘雄伟","id":"381a6bef-4876-4191-9b19-39b3f8fc9adb","originalAuthorName":"潘雄伟"},{"authorName":"陈瑶","id":"edcbe0a7-843d-42b7-985c-59dbe36f73cb","originalAuthorName":"陈瑶"},{"authorName":"张小松","id":"599ec3a8-fde8-4ad5-8016-babbcbf7a490","originalAuthorName":"张小松"}],"doi":"","fpage":"596","id":"4c620446-59ca-432e-ba0f-e3aa9c6d0b31","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"be50ee8e-e41f-45fe-a4b1-3ce5cd2a56f5","keyword":"热空气利用","originalKeyword":"热空气利用"},{"id":"db9e4f09-26f6-46df-903e-0a12ddeba033","keyword":"溶液再生","originalKeyword":"溶液再生"},{"id":"78bb3ce3-a68e-4450-aaba-05acf70e7012","keyword":"传热系数","originalKeyword":"传热系数"},{"id":"ec0f78bb-9106-4ae8-aff2-27ae39a9fbd2","keyword":"传质系数","originalKeyword":"传质系数"},{"id":"be087d6c-b986-4198-a93a-65c699604284","keyword":"实验研究","originalKeyword":"实验研究"}],"language":"zh","publisherId":"gcrwlxb201304003","title":"热空气用于溶液再生实验研究与能效分析","volume":"34","year":"2013"},{"abstractinfo":"在70℃条件下,对低密度聚乙烯(LDPE)/聚烯烃弹性体(POE)共混物进行八周热空气老化试验,通过差示扫描量热法(DSC)和宽角X射线衍射(WAXD)表征了共混物结晶行为的变化,研究了熟空气老化对共混物力学性能的影响.ω(POE)为30%的共混物具有优异的耐热氧老化性能,在老化前期,其断裂伸长率有所增加,在老化后期才略有下降,而拉伸强度则基本不变.热空气老化对共混物结晶行为产生明显的影响,且结晶行为的变化主要在老化前期完成.经过热空气老化,部分在制备过程中形成的不完善晶体重新结晶,晶粒尺寸逐渐变大,提高了LDPE结晶的完善性.","authors":[{"authorName":"王新鹏","id":"f2046faf-9986-4e62-91b5-ebf02ef9f317","originalAuthorName":"王新鹏"},{"authorName":"陈双俊","id":"317294b3-358e-45aa-bd4b-42f693870ef7","originalAuthorName":"陈双俊"},{"authorName":"张军","id":"98e38935-b716-4a26-a576-8b6a21bbc838","originalAuthorName":"张军"}],"doi":"","fpage":"87","id":"21ed1b16-c331-4942-bf06-82dc4d195955","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"eb074442-7815-48f6-9847-8f51a68ec3a4","keyword":"热空气老化","originalKeyword":"热空气老化"},{"id":"e65fa168-3dcf-4e40-ad8a-a2e67580b025","keyword":"低密度聚乙烯","originalKeyword":"低密度聚乙烯"},{"id":"a8f26aa5-3c34-4ff6-bec3-f63d8e9db43e","keyword":"聚烯烃弹性体","originalKeyword":"聚烯烃弹性体"},{"id":"66cb0e57-b4fe-4a8d-b028-a458bfb9817a","keyword":"共混物","originalKeyword":"共混物"},{"id":"90ed3aeb-da9e-46d7-bcca-667a77b91a97","keyword":"结晶行为","originalKeyword":"结晶行为"},{"id":"2674b211-d864-40f2-8804-3754b124edb0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201002025","title":"热空气老化对LDPE/POE共混物结晶行为和力学性能的影响","volume":"26","year":"2010"},{"abstractinfo":"在40℃和80℃环境中,分别对Bayer-PC、Japan-PC、Korea-PC三种聚碳酸酯缺口冲击试样进行了热空气老化和热水老化实验研究.在0~400h老化时间内,研究了这三种PC的热空气老化和热水老化对冲击强度和断面形貌的影响,讨论了PC热空气老化和热水老化机理.结果表明:老化前,Japan-PC、Korea-PC和Bayer-PC冲击强度分别为95kJ/m2、83 kJ/m2和55 kJ/m2;在40℃和80℃热空气老化后,三种PC冲击强度均有所下降,其中80℃热空气老化引起的降幅最大,热空气老化400h后的冲击强度顺序为Japan-PC>Korea-PC>Bayer-PC,在40℃热水老化后,三种PC的冲击强度几乎不受老化时间影响;在80℃热水老化后,三种PC冲击强度均有所下降,其中Bayer-PC降幅最小,Japan-PC次之,Korea-PC最大,但PC的平衡冲击强度大小与热空气老化的情况相同.由扫描电镜对冲击断面形貌观察可知,未老化的三种PC均以剪切屈服破坏机理为主,老化后的三种PC主要以银纹集中破坏机理为主.","authors":[{"authorName":"詹茂盛","id":"10a5f81f-f994-4254-9e4e-cd0d38b0500d","originalAuthorName":"詹茂盛"},{"authorName":"方义","id":"2fbc57a2-a8a6-4f94-9aaf-6a6fac1f6e8d","originalAuthorName":"方义"},{"authorName":"王瑛","id":"4a67f310-8cc7-4757-bb70-d9a06144d444","originalAuthorName":"王瑛"},{"authorName":"范荣峥","id":"7eeb91cd-a652-4027-be36-a524651e6551","originalAuthorName":"范荣峥"}],"doi":"10.3969/j.issn.1005-5053.2000.04.010","fpage":"52","id":"1b9319fa-430c-4b2c-bb9b-f61b26291182","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"35f77fec-82e4-4243-913d-f561daedc553","keyword":"聚碳酸酯","originalKeyword":"聚碳酸酯"},{"id":"1bef332e-3452-4f1d-9092-883591b9e92e","keyword":"热空气老化","originalKeyword":"热空气老化"},{"id":"dfe39b22-db39-4cbc-9649-d68e5b2a728c","keyword":"热水老化","originalKeyword":"热水老化"},{"id":"3f6e8e4d-6eab-4c38-82cb-1ca7505b4f64","keyword":"破坏形貌","originalKeyword":"破坏形貌"}],"language":"zh","publisherId":"hkclxb200004010","title":"热空气老化和热水老化对PC冲击性能的影响","volume":"20","year":"2000"},{"abstractinfo":"通过不同应力状态下热空气老化试验和高低温循环老化试验,研究了NR1151天然橡胶性能的老化变化情况.结果表明:在70,90℃和110℃不同温度下连续热空气老化时,NR1151天然橡胶材料的拉伸强度和拉断伸长率均随着老化时间增加而明显下降,温度越高则下降越快;90℃时,应力对NR1151的老化有明显的加速作用;高低温循环老化时,NR1151天然橡胶材料的拉伸性能老化速率变慢,且循环周期越短,性能老化速率越慢.","authors":[{"authorName":"丁祖群","id":"626b6edd-7289-4db2-b84d-c8025e0979e8","originalAuthorName":"丁祖群"},{"authorName":"侯平安","id":"ce00760b-c0da-49d1-9192-94ef448d8303","originalAuthorName":"侯平安"},{"authorName":"闵雅兰","id":"9eb9fdcd-c548-46c8-9d12-770ef1bc23e0","originalAuthorName":"闵雅兰"}],"doi":"10.11868/j.issn.1005-5053.2016.2.008","fpage":"46","id":"b714bce5-e4eb-49ea-8bf4-db5c7f553b63","issue":"2","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"a2d4bbd8-dae6-449b-84a6-c06cb6c6142a","keyword":"天然橡胶材料","originalKeyword":"天然橡胶材料"},{"id":"ea26577b-ebac-441a-875e-4f90c5345649","keyword":"热空气老化","originalKeyword":"热空气老化"},{"id":"1d046833-4c1d-4b60-ab51-adde27f7a061","keyword":"应力-热老化","originalKeyword":"应力-热老化"},{"id":"ebb02ce1-53de-49ca-967f-5aa464e70ff9","keyword":"高低温循环老化","originalKeyword":"高低温循环老化"},{"id":"0c9a96dd-7eed-46e0-832c-0dc3a17efbc7","keyword":"老化失效","originalKeyword":"老化失效"}],"language":"zh","publisherId":"hkclxb201602008","title":"NR1151天然橡胶材料的热空气老化性能","volume":"36","year":"2016"},{"abstractinfo":"采用扫描电镜(SEM)、核磁共振交联密度仪对热空气老化前后某轨道车辆橡胶堆材料结构进行对比分析,并分析了其常规力学性能和动态力学性能的变化.试验结果表明,80℃条件下,随着老化时间的延长,材料内部结构变化直观上不明显,交联密度先增大后减小,拉伸强度先增大后减小,拉断伸长率呈减小趋势,硬度呈增大趋势,储能模量逐步增大,损耗因子先增大后减小.","authors":[{"authorName":"孙琳","id":"c88334ec-43dd-44cd-bc17-da2df039ae02","originalAuthorName":"孙琳"},{"authorName":"曹志伟","id":"7dc7dc31-d644-438a-b547-3bd78a2a2ffa","originalAuthorName":"曹志伟"},{"authorName":"林化强","id":"d463aaa6-1bbf-42e6-a7b8-657d57567e50","originalAuthorName":"林化强"},{"authorName":"林鹏","id":"ff87a17a-0c92-4df7-a56e-c96b15b766cf","originalAuthorName":"林鹏"},{"authorName":"胡昌飞","id":"40b0fd4c-a90f-49ad-80a2-eb20a9cfe4a7","originalAuthorName":"胡昌飞"},{"authorName":"王兵","id":"c29f1ab8-4615-46a4-813d-70e27e1751c8","originalAuthorName":"王兵"}],"doi":"","fpage":"81","id":"2b837ed1-8e2b-4753-9c27-bdbd2289a6ef","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"4bcefbd2-1993-423a-8cbb-2e230a8e8aea","keyword":"轨道车辆","originalKeyword":"轨道车辆"},{"id":"3f25630a-f1bd-4b4c-a0e6-f02af3e487ed","keyword":"橡胶","originalKeyword":"橡胶"},{"id":"445bea59-e78b-4cc1-a6d6-c105f008007c","keyword":"热空气老化","originalKeyword":"热空气老化"},{"id":"9e81cc80-a79d-42af-9fc6-f3531f94386b","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"64a530e2-20b9-4c99-9da4-cde288772256","keyword":"动态","originalKeyword":"动态"}],"language":"zh","publisherId":"clkfyyy201605017","title":"轨道车辆橡胶堆材料热空气老化性能研究","volume":"31","year":"2016"},{"abstractinfo":"分别利用材料万能试验机和DMA研究了热空气老化对PBO/T700层间混杂复合材料静态力学性能和动态力学行为的影响.静态力学性能测试结果表明,经热空气老化不同时间后,PBO/T700层同混杂复合材料的拉伸强度和压缩强度均出现了一定程度的下降,最大降幅分别为12.7%和6.9%,拉伸模量从126 GPa增大到145 GPa,弯曲强度、弯曲模量和层间剪切强度变化较小.DMA测试结果表明,热空气老化使PBO/T700层间混杂复合材料的耐热性和刚性提高,随着老化时间的增加,E'向低温方向移动,E\"向高温方向移动,说明复合材料的耐热性和刚性又开始下降.","authors":[{"authorName":"张承双","id":"ddde0974-7c69-4fc3-889b-cc3462eedc34","originalAuthorName":"张承双"},{"authorName":"包艳玲","id":"2a62309b-a566-4b3d-9fad-771c2ac6547d","originalAuthorName":"包艳玲"},{"authorName":"刘宁","id":"db3a1f48-912f-4538-901d-099256a3c827","originalAuthorName":"刘宁"},{"authorName":"王健","id":"8fee71d7-0327-4441-9850-75308ee49a47","originalAuthorName":"王健"},{"authorName":"陶利军","id":"d31ded8b-93f8-463a-9948-959033e060f6","originalAuthorName":"陶利军"}],"doi":"","fpage":"25","id":"67697244-31ae-4af6-94e3-03d4a3514594","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"6f059ede-3f97-4fa0-9c92-beed4f3eb295","keyword":"PBO纤维","originalKeyword":"PBO纤维"},{"id":"d3355eb6-1314-4e25-a3f7-ab03b72d6e37","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"b78429de-6f5d-4e01-bd4b-2b7a0c926b40","keyword":"混杂复合材料","originalKeyword":"混杂复合材料"},{"id":"11033203-4e0f-4e41-8a56-38e76a22fc0c","keyword":"静态力学性能","originalKeyword":"静态力学性能"},{"id":"36e28233-e2b5-40f4-ae55-3674f4a4f49b","keyword":"动态力学行为","originalKeyword":"动态力学行为"}],"language":"zh","publisherId":"blgfhcl201701004","title":"热空气老化对PBO/T700层间混杂复合材料力学性能的影响","volume":"","year":"2017"},{"abstractinfo":"本文对底部加热的水平空气层的自然对流换热进行了可视化实验研究,采用实时全息干涉照相技术获得了温度场的激光干涉图及流场的烟可视化图象.实验结果表明,这种水平空气层自然对流换热是非稳态的,并且在空间上是三维的.","authors":[{"authorName":"王建刚","id":"d938cf85-0ab5-4d33-912a-77bf007093c1","originalAuthorName":"王建刚"},{"authorName":"杨茉","id":"91a48171-0410-427a-9e23-10d77e5010ec","originalAuthorName":"杨茉"},{"authorName":"殷俊","id":"9e0d25b5-f087-496b-a826-42958aaac2c6","originalAuthorName":"殷俊"},{"authorName":"章立新","id":"07890ebc-eb71-49e6-b458-3732bc4da151","originalAuthorName":"章立新"},{"authorName":"王治云","id":"09beecae-9d86-4380-a301-bfc4d228f8d9","originalAuthorName":"王治云"}],"doi":"","fpage":"986","id":"f82bb273-816c-4bca-8b1b-cb4a9314c6e1","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"652ec8f8-afbf-40f1-8818-bf16883773b5","keyword":"自然对流","originalKeyword":"自然对流"},{"id":"3fd048ea-51ce-4363-95ea-73e0b9349d47","keyword":"可视化","originalKeyword":"可视化"},{"id":"5861c745-e176-499a-90f7-04780741aed1","keyword":"全息干涉","originalKeyword":"全息干涉"}],"language":"zh","publisherId":"gcrwlxb200406026","title":"底部加热空气层自然对流的可视化实验研究","volume":"25","year":"2004"},{"abstractinfo":"本文研究了一次风风速对高温预热空气下的煤粉MILD燃烧的影响.首先通过与国际火焰研究基金会(IFRF)的煤粉MILD燃烧实验数据对比,验证了数值模拟方法的可行性.然后在不同一次风入射角(0°、+5°和-5°)下,保持一次风风量不变,通过改变管径将风速从26 m/s增至48 m/s.研究发现,当一次风与二次风平行(0°)或背离(+5°)入射时,提高一次风风速会使炉内的峰值温度下降;当一次风朝向(-5°)二次风入射时,提高速度会使炉内温度峰值先下降后升高.总体而言,一次风与二次风背离入射时,温度峰值最低;一次风朝向二次风入射时,温度峰值最高.","authors":[{"authorName":"梅振锋","id":"d700b5ba-abf1-428b-a031-4d6b2aa8068d","originalAuthorName":"梅振锋"},{"authorName":"王飞飞","id":"80a9b717-1e8e-4b83-a4c1-47dffbcdf661","originalAuthorName":"王飞飞"},{"authorName":"张健鹏","id":"1b393b01-b676-43c1-8c95-ecabae4ffbba","originalAuthorName":"张健鹏"},{"authorName":"李鹏飞","id":"2544ddda-8362-461c-9947-8aa15ce13e6e","originalAuthorName":"李鹏飞"},{"authorName":"米建春","id":"7c6ae6e8-2f45-4636-9ab4-61e723dc0ec1","originalAuthorName":"米建春"}],"doi":"","fpage":"782","id":"327e4ba1-3fa0-41ea-807e-78442871c057","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f8d25170-efaf-45d1-94f2-a5f53800e036","keyword":"MILD燃烧","originalKeyword":"MILD燃烧"},{"id":"ce69ca9b-0211-4c44-b503-9867bf51ca76","keyword":"煤粉","originalKeyword":"煤粉"},{"id":"5b2570a0-f767-4fab-8eee-f989fad15816","keyword":"一次风","originalKeyword":"一次风"},{"id":"44f8772d-32b6-4445-9657-feaa7e39062b","keyword":"风速","originalKeyword":"风速"},{"id":"e82174ea-f167-4056-86ee-5c7d9c659c7e","keyword":"入射角度","originalKeyword":"入射角度"}],"language":"zh","publisherId":"gcrwlxb201404037","title":"一次风风速对高温预热空气下的煤粉MILD燃烧的影响","volume":"35","year":"2014"}],"totalpage":4168,"totalrecord":41672}