{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以分析纯Al(NO3)3·9H2O、NH3·H2O和50nm的SiC粉体为原料,采用溶胶-凝胶法制备干凝胶,经热处理合成Al2O3/SiC纳米复合粉体.利用微波烧结制备Al2O3/SiC纳米复合陶瓷,并与常规烧结比较,分析了两种烧结方法对制备试样的力学性能影响.结果表明,与常规烧结相比,微波烧结可以提高Al2O3/SiC纳米复合陶瓷的强度和韧性,改善材料的显微结构,促进致密化和晶粒生长.","authors":[{"authorName":"王霞","id":"357f4702-42b1-4300-b7ea-4d4090efe13a","originalAuthorName":"王霞"},{"authorName":"潘成松","id":"ca254118-6891-4d8e-9e34-b1cd37972d82","originalAuthorName":"潘成松"},{"authorName":"陈玉祥","id":"fe2392b7-5dac-4db4-8841-663a9fc22d27","originalAuthorName":"陈玉祥"}],"doi":"10.3969/j.issn.1003-1545.2008.02.004","fpage":"14","id":"24b94ed6-0c05-478e-9ae6-f19da5efb26a","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"526116aa-c10f-4058-8af9-bf94fb672ec0","keyword":"微波烧结","originalKeyword":"微波烧结"},{"id":"a244abda-f1cb-42de-958b-77880c4c40b8","keyword":"常规烧结","originalKeyword":"常规烧结"},{"id":"bab74a9c-e77a-4044-a901-4256b70d9046","keyword":"Al2O3/SiC纳米复合陶瓷","originalKeyword":"Al2O3/SiC纳米复合陶瓷"},{"id":"2963d79d-2d28-459e-b68c-fe0c740ca215","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkfyyy200802004","title":"微波烧结Al2O3/SiC纳米复合陶瓷的研究","volume":"23","year":"2008"},{"abstractinfo":"研究了沉淀法制备Al2O3SiC纳米复合陶瓷的工艺过程,利用Al2O3从,γ相到α相的蠕虫状生长过程,使大部分纳米SiC颗粒位于Al2O3晶粒内.用沉淀法制得的、含有5vol%SiCAl2O3SiC纳米复合陶瓷,其强度为467MPa,韧性为4.7MPa·m1/2,与一般的Al2O3陶瓷相比有较大的提高,显示了沉淀法制备Al2O3SiC纳米复合陶瓷的优点.","authors":[{"authorName":"王宏志","id":"b1ac90a1-76f3-4ac5-926f-f6c7dc1bb9fb","originalAuthorName":"王宏志"},{"authorName":"高濂","id":"5641d3ba-9a23-4457-84ee-0d06689eb2ea","originalAuthorName":"高濂"},{"authorName":"归林华","id":"fb556eeb-828a-4c85-95ff-238c0cd20da4","originalAuthorName":"归林华"},{"authorName":"郭景坤","id":"7b846cb0-8305-412c-86a4-93274508ea17","originalAuthorName":"郭景坤"}],"categoryName":"|","doi":"","fpage":"671","id":"f9e9b4cc-bdae-46d6-86d5-a1d3104a6b13","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d840b9e5-4042-4fbb-ad93-cc9b978071a3","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"6156efa5-facf-411a-a4f0-e1ddc4bf50cd","keyword":" nanocomposites","originalKeyword":" nanocomposites"},{"id":"5b65cf55-6f5d-48b7-94c0-a87290eeefdd","keyword":" alumina","originalKeyword":" alumina"}],"language":"zh","publisherId":"1000-324X_1997_5_6","title":"晶内型Al2O3SiC纳米复合陶瓷的制备","volume":"12","year":"1997"},{"abstractinfo":"以微米 SiC颗粒和工业氧化铝为原料,采用机械混合法制备 Al2O3/SiC复合粉末.将复合粉末煅烧、成型,在 1 600℃, 2h烧结可制备出 Al2O3/SiC纳米复合陶瓷.通过 XRD、 DSC-TG、 SEM和 TEM等分析了煅烧和烧结过程中相组成的变化,烧成收缩和微观结构,结果表明:在氧化铝基体中添加 8%(质量分数)平均粒径为 5μ m的 SiC粒子,复合粉末经 700℃煅烧后再成型,试样于 1 600℃烧结,其相对体积质量可达 93.8%. SiC粒子主要被包裹在 Al2O3晶内形成\"晶内型\"纳米复合陶瓷.在烧结过程中由 SiC氧化形成的 SiO2包裹层与基质氧化铝反应形成的无定形莫来石前躯体可大大促进烧结; SiC埋料氧化形成的外壳可有效阻止烧结体内 SiC的进一步氧化.","authors":[{"authorName":"蔡舒","id":"44cdc6ee-97c7-4b8c-8b7a-27e6a0199240","originalAuthorName":"蔡舒"},{"authorName":"彭珍珍","id":"865489a7-0d01-42b6-be9b-9806f3b1ce98","originalAuthorName":"彭珍珍"},{"authorName":"冯杰","id":"d72e0275-5f5c-4b0f-baca-adcf64d63d8c","originalAuthorName":"冯杰"},{"authorName":"鲁枫","id":"3ba21a99-c0bd-4055-b7f2-7bc89583b6d8","originalAuthorName":"鲁枫"},{"authorName":"李鸿祥","id":"c481b794-916b-402a-92cf-1e0b83de60ad","originalAuthorName":"李鸿祥"},{"authorName":"陈玉如","id":"13605822-c9d3-4e73-b7da-d3e6064724bd","originalAuthorName":"陈玉如"}],"doi":"10.3969/j.issn.1004-244X.2004.05.003","fpage":"10","id":"059f94a9-2b36-41e4-856b-24fbcfac38b4","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f80e8a38-5f2b-4981-8389-05f964103341","keyword":"Al2O3/SiC纳米陶瓷","originalKeyword":"Al2O3/SiC纳米陶瓷"},{"id":"8ce74f0b-04b9-4fb4-b3d8-40400032b731","keyword":"SiC氧化","originalKeyword":"SiC氧化"}],"language":"zh","publisherId":"bqclkxygc200405003","title":"常压烧结制备Al2O3/SiC纳米复合陶瓷及其显微结构的研究","volume":"27","year":"2004"},{"abstractinfo":"采用一次粒径分别为10nm和15nm的α-Al2O3和SiC超细粉体, 制备了Al2O3/SiC纳米陶瓷复合材料, 并研究了其强化机理, 提出了内晶颗粒残余应力强化模型. 该模型很好地解释了Al2O3/SiC纳米复合材料的强度和断裂方式随SiC颗粒含量的变化规律.","authors":[{"authorName":"孙旭东","id":"8d2c4729-0584-4ad2-82d0-744a40e7ca14","originalAuthorName":"孙旭东"},{"authorName":"梁勇","id":"164f3908-928d-4cbf-a646-0254b8da9824","originalAuthorName":"梁勇"},{"authorName":"张民","id":"e18be0bb-e8e6-4198-9631-2f4c3664e8d0","originalAuthorName":"张民"},{"authorName":"李继光","id":"97176527-b7ca-45e5-a99f-adbff30b3627","originalAuthorName":"李继光"},{"authorName":"李晓东","id":"2a90c734-8d04-4cd9-a1f9-e9e9a0d4fa5f","originalAuthorName":"李晓东"},{"authorName":"肖永亮","id":"02be9e11-5886-4aff-b6b8-f1c214d698b0","originalAuthorName":"肖永亮"}],"categoryName":"|","doi":"","fpage":"879","id":"94432637-dfb1-423e-96a0-bfc5115376d5","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"558a40af-369c-4eb8-9017-208f98d5b5e5","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"48737453-9f3d-41f6-b0ff-ac414bacc0dc","keyword":"null","originalKeyword":"null"},{"id":"d2e5447c-05d9-4e57-828c-3b17208c8408","keyword":"null","originalKeyword":"null"},{"id":"1a57f0f9-6e94-478d-8d97-1a1f95d8cb52","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1999_8_12","title":"Al2O3SiC纳米陶瓷复合材料的强化机理","volume":"35","year":"1999"},{"abstractinfo":"Al2O3/SiC纳米复相陶瓷由于具有优异的室温及高温机械性能而成为结构陶瓷领域研究的热点.本文就Al2O3/SiC纳米复相陶瓷的不同制备加工方式及增强增韧机理进行了详细的阐述.其中粉体的均匀混合是制备过程的关键因素,残余应力及裂纹偏转导致的穿晶断裂以及裂纹尖端SiC颗粒的桥联作用是复相陶瓷强度和韧性增加的主导因素.","authors":[{"authorName":"颜鲁婷","id":"940cef90-3a8e-4ae0-9b0a-aabad6b10a5c","originalAuthorName":"颜鲁婷"},{"authorName":"司文捷","id":"4130f3a2-7c77-4d3d-b312-412dbd5063cb","originalAuthorName":"司文捷"},{"authorName":"苗赫濯","id":"ce7bf378-8626-460d-bf04-d05b7d5742a3","originalAuthorName":"苗赫濯"}],"doi":"10.3969/j.issn.1005-0299.2005.04.001","fpage":"337","id":"37355e30-0820-40a2-9856-be4a5a5cdb4f","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a0d566d2-f53a-4ce9-ba90-db80dcb3041d","keyword":"纳米复相陶瓷","originalKeyword":"纳米复相陶瓷"},{"id":"dadc703e-5a52-4c76-9bfa-dd5990e55e55","keyword":"制备","originalKeyword":"制备"},{"id":"1d20314c-447d-4466-8e36-a64f376fd06f","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"5017b6ad-4205-4a23-95e7-48c935195d5c","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"clkxygy200504001","title":"Al2O3/SiC纳米复相陶瓷材料的研究进展","volume":"13","year":"2005"},{"abstractinfo":"在不同粒度的Al2O3微粉基体中加入SiO2纳米粉,通过特殊的粉体分散及热压铸方法制备出Al2O3/SiO2纳米复合陶瓷型芯.研究了物料组成对Al2O3/SiO2纳米复合陶瓷型芯烧制特性的影响.结果表明:加入SiO2纳米粉后,改善了材料的流动性,并使陶瓷型芯的抗弯强度提高,烧结温度降低;在不同物料组成的纳米复合陶瓷型芯中,粗细物料搭配的基体其抗弯强度较高,并得到了最佳的物料组成及烧结制度.","authors":[{"authorName":"赵红亮","id":"b86f90e6-23c4-48fb-a17f-d337dcfab75c","originalAuthorName":"赵红亮"},{"authorName":"楼琅洪","id":"ab0d5ddc-9a57-4ddf-94f7-db33f1a60737","originalAuthorName":"楼琅洪"},{"authorName":"翁康荣","id":"9c4b9168-e61f-4afd-9949-cf2d86fd3cc7","originalAuthorName":"翁康荣"},{"authorName":"关绍康","id":"7e17e632-a22f-4ae1-a78e-d1c1c182a6e3","originalAuthorName":"关绍康"},{"authorName":"李英敖","id":"e298c041-5caa-4137-bc3d-092901ab4e3d","originalAuthorName":"李英敖"},{"authorName":"赵惠田","id":"87a6327b-947a-48b1-aa8b-1a21e2387070","originalAuthorName":"赵惠田"},{"authorName":"胡壮麒","id":"b1462118-fa0a-4171-8072-65e1b1271895","originalAuthorName":"胡壮麒"}],"doi":"","fpage":"481","id":"c40287a8-24bc-4697-aabe-9724e92ab580","issue":"z1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"c428604f-e2b0-4d79-b827-55d5847354ca","keyword":"物料组成","originalKeyword":"物料组成"},{"id":"579dc075-32df-4fbd-b7d5-ccb69e2589a1","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"7fc39740-c906-4b1e-a8c1-4ab26973dc51","keyword":"陶瓷型芯","originalKeyword":"陶瓷型芯"},{"id":"c6e589f5-77d7-46ac-b923-0fc2abec4c09","keyword":"性能","originalKeyword":"性能"},{"id":"ed5cc954-aee0-4527-a1f4-7472146e1624","keyword":"烧结","originalKeyword":"烧结"}],"language":"zh","publisherId":"gtyjxb2003z1112","title":"Al2O3/SiO2纳米复合陶瓷型芯","volume":"15","year":"2003"},{"abstractinfo":"本文从烧结温度、基体晶粒大小、断裂方式、SiC在基体中的分布等几个方面研究了纳米SiC颗粒的加入对Al2O3微观结构的影响.用非均相沉淀工艺制备的纳米SiC-Al2O3复合粉体,具有Al2O3颗粒包裹纳米SiC的特点,提高了烧结温度,明显使Al2O3晶粒变小,并且抑制晶粒异常长大,试样的断裂方式从以沿晶断裂为主转变到以穿晶断裂为主.SiCAl2O3中分布均匀,大部分位于晶粒内,少部分位于晶界上.这种微观结构有利于力学性能的提高.","authors":[{"authorName":"王宏志","id":"8f7ca903-67f2-4569-80f8-0f31b306575c","originalAuthorName":"王宏志"},{"authorName":"高濂","id":"3d53b747-f989-44ff-a796-a4b7322caa87","originalAuthorName":"高濂"},{"authorName":"陈红光","id":"cc863df2-184f-45d9-aa3a-6e3962705fea","originalAuthorName":"陈红光"},{"authorName":"归林华","id":"fff928c9-6c07-4383-96cb-ad2fdf52d9a8","originalAuthorName":"归林华"},{"authorName":"郭景坤","id":"54638e0a-4459-4b51-8f11-1d6c69ffcca6","originalAuthorName":"郭景坤"}],"categoryName":"|","doi":"","fpage":"603","id":"08c2bdb5-092e-45ef-bcd2-c83121b53f8e","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a8695c73-6791-42ef-80ee-39bc7643310b","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"1f26c700-0344-4fbb-9a7b-58c5d4f10f6e","keyword":"null","originalKeyword":"null"},{"id":"c8b67ae4-94c8-4338-b71b-922cf201bde9","keyword":"null","originalKeyword":"null"},{"id":"bb1bb522-7f6a-441e-a7cc-b26d1b4922de","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_4_15","title":"Al2O3复合材料中纳米SiC对微观结构的影响","volume":"13","year":"1998"},{"abstractinfo":"研究了两种微米Al2O3纳米ZrO2复合陶瓷的裂纹扩展过程与显微结构的关系.结果表明,Al2O3晶粒内部形成纳米级或亚微米级ZrO2颗粒,是复合陶瓷的断裂模式从沿晶断裂向穿晶断裂转化的主因.ZrO2含量较低有利于Al2O3晶界迁移包裹纳米ZrO2形成内晶结构;而ZrO2含量较高使主晶相长大受到抑止,不利于形成内晶结构,趋向于沿晶断裂.裂纹穿晶扩展需要的驱动力比沿晶断裂大,故裂纹扩展阻力曲线的上升趋势更加显著.裂纹穿晶扩展路径主要取决于内晶颗粒产生的弹性应力场的性质.","authors":[{"authorName":"王昕","id":"35c2c60b-56a4-4424-b8f3-2a6bad951363","originalAuthorName":"王昕"},{"authorName":"于薛刚","id":"bbfb9f2d-1cbf-4444-97d1-c20267378fda","originalAuthorName":"于薛刚"},{"authorName":"单妍","id":"b427577d-bb22-4af2-8210-a96de60b7f35","originalAuthorName":"单妍"},{"authorName":"孙勇","id":"9d41e6d0-7d81-4176-b81a-bca35fb06034","originalAuthorName":"孙勇"},{"authorName":"范文涛","id":"a9a23408-2c48-4df0-a5b4-5c8a8f6c0de9","originalAuthorName":"范文涛"},{"authorName":"刘子峰","id":"33956223-4fbd-411b-9bb6-43f1e934de01","originalAuthorName":"刘子峰"}],"doi":"10.3321/j.issn:1005-3093.2007.05.007","fpage":"482","id":"fec1064d-3ba2-47c3-8123-84fed7e92821","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"ceaf0a8c-0e37-4b61-ae43-87e560f7d84c","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"278e6069-11ec-484c-87d7-3a1d8f1a3afd","keyword":"ZTA陶瓷","originalKeyword":"ZTA陶瓷"},{"id":"e82ea6fd-55ad-4f21-8820-3ce7aee0fa76","keyword":"R曲线","originalKeyword":"R曲线"},{"id":"0caa4120-faca-4fc2-8e87-ff7f9dc29957","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"1dd7f230-ffb2-4276-9cf4-c07321eb7973","keyword":"裂纹扩展","originalKeyword":"裂纹扩展"}],"language":"zh","publisherId":"clyjxb200705007","title":"纳米ZrO2与微米Al2O3复合陶瓷的断裂模式","volume":"21","year":"2007"},{"abstractinfo":"利用溶胶-凝胶方法制备了的CoAl2O4/Al2O3纳米复合陶瓷,并用X-ray分析(XRD)、红外光谱(IR)和扫描电镜分析(SEM)对其结构进行了分析.结果表明,随Al2O3含量增多,CoAl2O4尖晶石相从CoAl2O4/Al2O3凝胶中的析晶温度升高.SEM形貌也说明,随Al2O3含量增多,CoAl2O4/Al2O3陶瓷中形成一定的层状结构.","authors":[{"authorName":"张栋杰","id":"83d03f46-507a-44e3-a3cd-86a9c559e8dd","originalAuthorName":"张栋杰"},{"authorName":"王克宇","id":"750285a3-92d5-418a-80b8-62b10f164fa2","originalAuthorName":"王克宇"}],"doi":"","fpage":"2744","id":"a734088d-63f1-443a-a626-0633022c5947","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ad904c8b-c40d-41ed-a116-cb101d265a68","keyword":"CoAl2O4","originalKeyword":"CoAl2O4"},{"id":"1c489eb9-579a-468b-a231-be74f53aa89f","keyword":"铁氧体","originalKeyword":"铁氧体"},{"id":"ca13c96b-29fc-4e56-90e1-d2379335de2e","keyword":"结构","originalKeyword":"结构"},{"id":"9b3ee86f-c4da-4a37-9fdf-247ebd1ab8ad","keyword":"纳米复合","originalKeyword":"纳米复合"}],"language":"zh","publisherId":"gncl2004z1767","title":"CoAl2O4/Al2O3纳米复合陶瓷的结构与表征","volume":"35","year":"2004"},{"abstractinfo":"本文介绍用非均相沉淀方法制备的纳米SiC-ZrO2(3Y)-Al2O3复合粉体经放电等离子超快速烧结得到晶内型的纳米复相陶瓷,超快速烧结的升温速率为600℃/min,在烧结温度不保温,迅即在3 min内冷却至600°C以下. 力学性能研究结果表明,在1450℃超快速烧结得到的纳米复相陶瓷的抗弯强度高达1200MPa,断裂韧性K1c为5 MPa1/2. TEM像显示纳米SiC颗粒大多分布在Al2O3母体晶粒内,也有一些纳米SiC颗粒分布在ZrO2晶粒内. 断裂表面的SEM像表明,穿晶断裂是其主要的断裂模式,这是所制备的纳米复相陶瓷力学性能大幅提高的主要原因.","authors":[{"authorName":"高濂","id":"7826a5a2-0a62-4601-8228-9ad7ccdb4dbd","originalAuthorName":"高濂"},{"authorName":"王宏志","id":"ee711b30-a79c-43c2-a4f8-547fa9ff1eaf","originalAuthorName":"王宏志"},{"authorName":"洪金生","id":"5a7b6321-687c-4618-8f0f-1b8a444521a5","originalAuthorName":"洪金生"},{"authorName":"宫本大树","id":"36203a7a-3d3d-450f-9bf9-0a2822d0b002","originalAuthorName":"宫本大树"},{"authorName":"DIAZ DE LA TORRE Sebastian","id":"4d069a6b-0fda-47c1-bfa5-a7ee173f94bf","originalAuthorName":"DIAZ DE LA TORRE Sebastian"}],"doi":"10.3321/j.issn:1000-324X.1999.05.015","fpage":"795","id":"c3842a23-1f7d-489a-87ed-29c6ae56192b","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"531fabe5-df93-4092-8bd0-b3a1da26ea86","keyword":"纳米复相陶瓷","originalKeyword":"纳米复相陶瓷"},{"id":"180af7bc-be4e-4575-8e29-f77d7d0b6cb7","keyword":"放电等离子烧结","originalKeyword":"放电等离子烧结"},{"id":"8881e3af-b550-4082-b823-68e44bf6bd9a","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"45c03dd5-0fd2-476b-a15d-c1f27c39484a","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"wjclxb199905015","title":"SiC-ZrO2(3Y)-Al2O3纳米复相陶瓷的力学性能和显微结构","volume":"14","year":"1999"}],"totalpage":13637,"totalrecord":136361}