{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以16种合金元素含量为输入层节点参数,以充放电循环性能为输出层节点参数,构建了16×48×1三层神经网络预测模型,并对预测能力进行了试验验证,同时对模型选出的合金进行了化学成分、显微组织、物相组成和充放电循环性能的测试与分析.结果表明,该神经网络模型的预测精度较高,V3TiNi0.56-0.1Sc合金具有最佳的充放电循环性能;该合金由V基固溶体相、TiNi相和Ti2Ni相组成,经过15次充放电循环后放电容量保持率高达82%,较V3TiNi0.56合金提高了80%.","authors":[{"authorName":"蒙飚","id":"f4e8488f-984d-4b91-9295-4d8dfbbb5388","originalAuthorName":"蒙飚"},{"authorName":"刘岽","id":"b147a3ce-2c06-40e4-b9c0-28f87aeda606","originalAuthorName":"刘岽"}],"doi":"10.7513/j.issn.1004-7638.2014.04.007","fpage":"32","id":"44671a95-92f6-4c5d-901c-c7b954a2b645","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"93666740-b7d9-45ae-9290-371f3f072f32","keyword":"钒基储氢合金","originalKeyword":"钒基储氢合金"},{"id":"7dcf63f0-ca26-4891-9a6d-b2e6bc23f743","keyword":"充放电循环性能","originalKeyword":"充放电循环性能"},{"id":"720eafe6-c046-4735-a754-67f90abb7f1a","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"01158bfb-23d3-4e2b-a721-f5848ce06ab1","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"e212f172-6145-4115-9d92-fbd80d760f64","keyword":"预测模型","originalKeyword":"预测模型"}],"language":"zh","publisherId":"gtft201404007","title":"基于神经网络的钒基储氢合金充放电循环性能预测分析","volume":"35","year":"2014"},{"abstractinfo":"研究了微量Ti在Ml(NiCoMnTi)5合金中的作用.结果表明,在铸态条件下,Ti几乎全部以TiNi3第二相的形式在晶界析出,退火处理后TiNi3相消失,但SEM和EDS表明Ti取代了AB5型化合物中A侧的稀土Ml,而不是B侧的Ni.Ti在A侧的取代量以5%为宜,此时合金在铸态和退火态的放电容量都在310 mA@h/g以上.进一步提高取代量虽然会改善循环稳定性,但大大降低了放电容量.","authors":[{"authorName":"朱光明","id":"fb6df56f-6ef3-452a-81b0-f891cd7e374f","originalAuthorName":"朱光明"},{"authorName":"雷永泉","id":"4fbf6999-52fc-4c16-bf10-761968400503","originalAuthorName":"雷永泉"},{"authorName":"陈立新","id":"b51bf66a-2566-4a74-adef-e7b611ae4f4d","originalAuthorName":"陈立新"},{"authorName":"王启东","id":"740e3268-138f-4d2d-bc39-18b8b48511bf","originalAuthorName":"王启东"}],"categoryName":"|","doi":"","fpage":"935","id":"3fc8ffa8-18e0-4fd7-82fb-e77a545656fb","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d01d4261-8662-4528-be95-ac7e5c264458","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"2786194f-71fa-4e15-8dbf-e015ee329e13","keyword":"null","originalKeyword":"null"},{"id":"69360df9-1d93-4f73-85b8-ca1006a0f48f","keyword":"null","originalKeyword":"null"},{"id":"f49b0f8c-824e-404a-bea9-1d024093ccae","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2001_9_5","title":"Ti对Ml(NiCoMnTi)5合金相结构和充放电循环性能的影响","volume":"37","year":"2001"},{"abstractinfo":"研究了微量Ti在Ml(NiCoMnTi)5合金中的作用.结果表明,在铸态条件下,Ti几乎全部以TiNi3第二相的形式在晶界析出,退火处理后TiNi3相消失,但SEM和EDS表明Ti取代了AB5型化合物中A侧的稀土Ml,而不是B侧的Ni.Ti在A侧的取代量以5%为宜,此时合金在铸态和退火态的放电容量都在310 mA@h/g以上.进一步提高取代量虽然会改善循环稳定性,但大大降低了放电容量.","authors":[{"authorName":"朱光明","id":"e63a6591-91be-4fd7-b52c-3f4b3f39c35d","originalAuthorName":"朱光明"},{"authorName":"雷永泉","id":"48464f34-d93a-4414-a61e-a0403d582b6d","originalAuthorName":"雷永泉"},{"authorName":"陈立新","id":"6bbec865-dd28-48aa-a2ff-d39e68c8ac9a","originalAuthorName":"陈立新"},{"authorName":"王启东","id":"69e13f0a-3ba3-4746-bfd0-4657d367e210","originalAuthorName":"王启东"}],"doi":"10.3321/j.issn:0412-1961.2001.09.009","fpage":"935","id":"44d052b0-63c0-405d-9bce-1cf60b65277d","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3ebb4a7c-0641-44f5-bdc2-af9df4e2ca55","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"2fdfbeff-a952-42e7-9f02-b18ba25d485d","keyword":"Ti","originalKeyword":"Ti"},{"id":"e00584d0-1016-4940-93ee-cf946e0134b0","keyword":"相结构","originalKeyword":"相结构"},{"id":"3d36694b-3de5-442d-bdf7-0b3ec93bbdb0","keyword":"电极","originalKeyword":"电极"}],"language":"zh","publisherId":"jsxb200109009","title":"Ti对Ml(NiCoMnTi)5合金相结构和充放电循环性能的影响","volume":"37","year":"2001"},{"abstractinfo":"通过将高比表面积电化学活性碳和石墨加入到铅酸电池的负极活性物质中,制备成新型铅碳负极,研究其在高倍率部分荷电状态(HRPSOC)下的循环性能.采用激光粒度仪、扫描电镜(SEM)、充放电机分别对材料和电池进行表征和测试.结果表明:碳的加入极大地提高于电池在高倍率部分荷电态下工作的循环寿命,其中以石墨和活性的性能碳混合加入时循环性能最好,循环次数达到85402次.SEM结果表明:碳材料的加入能有效抑制铅酸电池负极在大电流放电时的不可逆硫酸盐化.","authors":[{"authorName":"王练武","id":"a4072b76-79c5-4c3e-ba4d-45ea76956436","originalAuthorName":"王练武"},{"authorName":"王先友","id":"8db8d577-47aa-43cb-aa6b-7e77cdb546e0","originalAuthorName":"王先友"},{"authorName":"黄伟国","id":"7b17f6e6-4797-4a28-80a2-9570f9e1c5f2","originalAuthorName":"黄伟国"},{"authorName":"童庆","id":"25f55132-bb74-4e0f-824f-94744f3697eb","originalAuthorName":"童庆"},{"authorName":"王良勇","id":"820c5d64-c104-4711-b7f3-98abed06627c","originalAuthorName":"王良勇"}],"doi":"","fpage":"112","id":"596a5d92-6d76-414d-922c-37db9743b8d6","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"945e634e-264b-4952-b6f4-6a882d0371e3","keyword":"活性碳","originalKeyword":"活性碳"},{"id":"3cb4ecf9-cf13-4698-9bda-2ab959802b30","keyword":"石墨","originalKeyword":"石墨"},{"id":"fc9f81a6-2b79-4c72-b6dc-94e10b9de906","keyword":"铅碳电池","originalKeyword":"铅碳电池"},{"id":"498c9efd-6c0c-4b8c-86f5-be33134d4fe6","keyword":"高倍率部分荷电态","originalKeyword":"高倍率部分荷电态"},{"id":"c9f8b46d-d93a-4e22-a888-372860e1bc1c","keyword":"循环寿命","originalKeyword":"循环寿命"}],"language":"zh","publisherId":"zgysjsxb201601014","title":"铅酸电池负极加碳后循环性能","volume":"26","year":"2016"},{"abstractinfo":"以碳气凝胶作锂离子模拟电池的正极,金属锂作模拟电池的负极进行电化学实验,通过改变催化剂和质量百分比来控制碳气凝胶的结构.采用恒流充放电模式对碳气凝胶结构和电化学性能间关系进行了研究.研究表明碳气凝胶的充放电曲线与碳气凝胶的结构间存在密切的联系.","authors":[{"authorName":"王琴","id":"656b2c4e-6661-47cd-b50c-ea3a7cb9b2d1","originalAuthorName":"王琴"},{"authorName":"沈军","id":"71441603-b9b3-43af-96e6-f7302d2d84d9","originalAuthorName":"沈军"},{"authorName":"周斌","id":"51a3f598-1848-453a-8a44-44da22a11ef2","originalAuthorName":"周斌"},{"authorName":"吴广明","id":"5f555b4b-a923-4c3f-ae89-b7a67d3912fa","originalAuthorName":"吴广明"},{"authorName":"郭艳芝","id":"a94fc3f7-d2f8-4744-8d10-38e3f16e2458","originalAuthorName":"郭艳芝"},{"authorName":"秦仁喜","id":"e548c932-0726-45a0-9f93-a6d8c6c63ecd","originalAuthorName":"秦仁喜"}],"doi":"","fpage":"273","id":"1a6740d0-9bc6-4b71-b292-bac95f580790","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1b843174-43ed-48fb-9f0d-adf4b60c253a","keyword":"碳气凝胶","originalKeyword":"碳气凝胶"},{"id":"291a573b-370d-468b-b4b7-b4cdb5a64204","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"5202c765-b350-4394-88bc-ef3e2ef370f8","keyword":"充放电曲线","originalKeyword":"充放电曲线"}],"language":"zh","publisherId":"cldb2004z1094","title":"碳气凝胶的充放电性能研究","volume":"18","year":"2004"},{"abstractinfo":"Mg、Ca、Sr、Ba、Cd、Zn、Co和La等添加剂以化学共沉积的方式添加到镍电极活性物质Ni(OH)2中,XRD显示Ni(OH)2为β型.恒流充放电和循环伏安实验结果表明:添加剂能提高镍电极的充放电性能,其中Sr、Co和La是比较理想的添加剂.它们能明显提高析氧极化,降低析氧速率,增强电极的可逆性,改善电极的充放电性能.","authors":[{"authorName":"邓晓燕","id":"ef8fdd3f-4b58-4a49-9ece-e3607927864b","originalAuthorName":"邓晓燕"},{"authorName":"崔作林","id":"08aac413-0d88-43bc-b17d-b0be683e8537","originalAuthorName":"崔作林"},{"authorName":"王荫东","id":"38a87155-eb70-4c42-85f9-18c3863ed5f6","originalAuthorName":"王荫东"}],"doi":"","fpage":"296","id":"247a9d92-3877-42e5-b8e9-3826afed028f","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c8de28d1-f019-4425-9cef-de8a5e63a94c","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"31299b22-6d7b-4e0a-819e-27add580455a","keyword":"Ni(OH)2","originalKeyword":"Ni(OH)2"},{"id":"285124aa-f058-48e1-8393-3774bc7d029f","keyword":"循环伏安","originalKeyword":"循环伏安"}],"language":"zh","publisherId":"gncl200303021","title":"添加剂对Ni(OH)2电极充放电性能的影响","volume":"34","year":"2003"},{"abstractinfo":"为了改善Ni(OH)2的电化学性能,提高锌镍电池的充放电效率,用简便的化学共沉淀法合成了Al掺杂的Ni(OH)2.用XRD、FTIR表征了合成掺杂Al的Ni(OH)2样品的晶体结构及IR光谱特征;测试了用Al掺杂的Ni(OH)2为正极活性物质的Zn/Ni实验电池的充放电性能.研究结果表明:所合成的Al掺杂Ni(OH)2具有α-Ni(OH)2的晶体结构;Al掺杂Ni(OH)2活性物质在充放电过程中转移电子数目大于1,Al掺杂Ni(OH)2作为正极活性物质的Zn/Ni试验电池的第二次循环放电比容量为362.9mAh/g.","authors":[{"authorName":"周环波","id":"96030b5e-b2ec-4c73-b917-9f3c72ca9a1c","originalAuthorName":"周环波"},{"authorName":"周震涛","id":"d8ea959a-9813-4b17-88d9-56993048a167","originalAuthorName":"周震涛"}],"doi":"","fpage":"263","id":"f233a72a-cf7d-4448-8fb1-0cd80285f11a","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0687a299-b2a6-47d7-9e49-2ed1ef8e7f76","keyword":"Al掺杂Ni(OH)2 晶体结构 充放电性能 Zn/Ni电池","originalKeyword":"Al掺杂Ni(OH)2 晶体结构 充放电性能 Zn/Ni电池"}],"language":"zh","publisherId":"cldb2005z1085","title":"Al掺杂Ni(OH)2的结构及充放电性能","volume":"19","year":"2005"},{"abstractinfo":"分别以 LiPF6、LiBOB 和 LiPF6/LiBOB 混合盐为电解质,研究了不同电解液对 LiFePO4/石墨动力电池高温循环性能的影响。结果表明,LiBOB 盐抑制了正极溶铁行为,并提高了正极高温循环充放电效率;由于 LiBOB基电解液对正极的保护及在负极表面良好的成膜作用,使得LiFePO4/石墨电池高温循环性能得到明显改善,但是增大了电池阻抗。LiPF6/Li-BOB混合盐可以发挥 LiBOB盐的优点增加正极稳定性,在石墨表面形成致密的 SEI 膜并能够有效改善电池高温循环性能,同时避免了单纯使用 LiBOB盐时阻抗较高的缺点。使用 LiPF6/LiBOB 混合盐,利用LiPF6盐低阻抗特性及 LiBOB盐对正、负电极的保护作用,可以有效提高电池电化学性能。","authors":[{"authorName":"宋海申","id":"0435c1c6-3d92-4c89-857c-8cb70293899d","originalAuthorName":"宋海申"},{"authorName":"赖延清","id":"c038f924-f3fc-4fe5-a728-1dfa402e3b73","originalAuthorName":"赖延清"},{"authorName":"李劼","id":"125d037e-dcdc-40a3-9862-f3c54cc4e269","originalAuthorName":"李劼"},{"authorName":"刘业翔","id":"29de0ec8-996e-455a-b253-7e912be5fe07","originalAuthorName":"刘业翔"},{"authorName":"张治安","id":"2dfb13de-a245-47ca-96ec-5006432870e1","originalAuthorName":"张治安"}],"doi":"10.3969/j.issn.1001-9731.2013.19.024","fpage":"2849","id":"41d15310-2772-4a67-8bc9-e1ece6370943","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f53868af-19a5-42ac-be97-eccbc8b9709c","keyword":"动力电池","originalKeyword":"动力电池"},{"id":"e417a85d-9a09-4d49-a84a-6101752c5fd2","keyword":"LiBOB","originalKeyword":"LiBOB"},{"id":"0f78879c-2fd2-4cd4-96f3-cedfafae2293","keyword":"混合盐","originalKeyword":"混合盐"},{"id":"ce86645c-c1cf-40c6-85b4-07d346774346","keyword":"LiFePO4","originalKeyword":"LiFePO4"},{"id":"63047bae-6efe-41ee-9652-458d41534961","keyword":"循环","originalKeyword":"循环"},{"id":"5d8716b0-14e8-4d7e-9a9e-8990476ccede","keyword":"高温","originalKeyword":"高温"}],"language":"zh","publisherId":"gncl201319024","title":"LiPF6/LiBOB混合锂盐改善LiFePO4/石墨动力电池高温循环性能研究","volume":"","year":"2013"},{"abstractinfo":"用炭热还原方法制备了Sn-SnOx/Carbon 复合材料,二氧化锡(SnO2)和羧甲基纤维素钠(CMCNa)的混合物在450℃炭化作用下同时生成了炭和SnSnO2纳米颗粒.应用XRD、SEM/EDS、BET和电化学方法对获得的复合材料进行了表征和性能研究.SEM观测结果证明Sn-SnO2纳米颗粒很好地分散在生成的炭复合体中.电化学测试表明Sn-SnOx/Carbon复合材料在100mA/g的电流密度下充放电,首次可逆容量高达600mAh/g,并且此电极材料具有良好的循环性能,在50次充放电后仍保持约376mAh/g的容量.","authors":[{"authorName":"任海娟","id":"6754aca4-0ca3-456e-bc17-41bc12661962","originalAuthorName":"任海娟"},{"authorName":"刘伟","id":"c5b64466-4cf5-4a99-8191-8bcc2bea6f79","originalAuthorName":"刘伟"},{"authorName":"刘贵昌","id":"416c0ece-439c-4896-8232-f726cc3b0f1b","originalAuthorName":"刘贵昌"},{"authorName":"宇井幸一","id":"54c8aed7-9317-45e3-8b87-2b168b77ceed","originalAuthorName":"宇井幸一"},{"authorName":"熊谷直昭","id":"81fb0a05-b4ad-4b69-a5b6-52c63b6b9e3b","originalAuthorName":"熊谷直昭"}],"doi":"","fpage":"19","id":"f6e74ef1-9e2d-4bf2-9208-ec4c25b05394","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2434fef3-66c8-4d06-b650-304948d740a1","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"619cdd88-de5c-4b3f-b2b9-3f4f650fdc0f","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"7e5774b8-96fa-4f5e-a615-f1dc2e3a98b0","keyword":"炭热还原法","originalKeyword":"炭热还原法"},{"id":"1c5604aa-9c7e-48f4-b249-5d3656635d39","keyword":"炭锡复合材料","originalKeyword":"炭锡复合材料"},{"id":"eeb84140-1aaf-4dc8-a805-cb3c1bfde657","keyword":"循环性能","originalKeyword":"循环性能"}],"language":"zh","publisherId":"gncl2011z1005","title":"锂离子电池负极材料Sn-SnOx/C复合体的制备及充放电性能","volume":"42","year":"2011"},{"abstractinfo":"在惰性气氛保护下, 采用\"梯度共晶\"-络合共沉积方法, 在球形Ni(OH)2表面包覆不同含量的Co(OH)2. 利用X射线衍射、扫描电镜和恒电流充放电技术测试其相结构、表面微观形貌和充放电性能. 研究结果表明: 镶嵌Co(OH)2包覆层的球形Ni(OH)2具有良好的放电容量和大电流充放电性能. 倍率放电性能与包覆Co(OH)2的量有一定的关系. 在0.8C充电/0.4C放电条件下, 包覆层最佳含Co(OH)2量为0.8%; 而在1C充放电、 2C充电/1C放电和3C充放电条件下, 包覆层含Co(OH)2量最佳范围为2%~3.6%. 表面包覆价态稳定Co(OH)2是改善氢氧化镍电极大电流充放电性能的一条有效途径.","authors":[{"authorName":"张文广","id":"36d0d8ad-601d-47fd-be57-02e1d4a446fa","originalAuthorName":"张文广"},{"authorName":"蒋文全","id":"b8f36b0e-64b6-4b9c-82c5-42c2c33f87a5","originalAuthorName":"蒋文全"},{"authorName":"于丽敏","id":"df95a0fc-f9f0-4f13-a904-c8fbf0fa1dbb","originalAuthorName":"于丽敏"},{"authorName":"傅钟臻","id":"60142e41-e930-4f8a-ad5b-2b4e49d780db","originalAuthorName":"傅钟臻"},{"authorName":"夏雯","id":"386eaf59-dbdf-4957-8eb4-94d0c7d63c73","originalAuthorName":"夏雯"}],"doi":"10.3969/j.issn.0258-7076.2007.06.013","fpage":"784","id":"3aeab4f3-b8a3-4fa3-b966-2187fc931acb","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a084fc05-74e8-45ae-bab2-1ce72efba9a2","keyword":"球型Ni(OH)2","originalKeyword":"球型Ni(OH)2"},{"id":"f7844093-36ea-4306-8067-555a51af7b60","keyword":"氢氧化钴","originalKeyword":"氢氧化钴"},{"id":"e556a491-70c1-4290-b586-93015ff65302","keyword":"包覆","originalKeyword":"包覆"},{"id":"80f76793-ce48-4caf-97ae-b629ad63ba63","keyword":"大电流","originalKeyword":"大电流"},{"id":"f1c5d52f-7d03-4c63-baff-fbcdd4fbd5e7","keyword":"放电容量","originalKeyword":"放电容量"}],"language":"zh","publisherId":"xyjs200706013","title":"氢氧化镍表面包覆Co(OH)2及其大电流充放电性能","volume":"31","year":"2007"}],"totalpage":9110,"totalrecord":91094}