{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用Gleeble-3500D热模拟机在电场下原位合成Fe-Cu-TiC复合材料,同时在真空炉中分别采用原位合成法及外加TiC颗粒法制备Fe-Cu-TiC复合材料,并对3种方法制取的Fe-Cu-TiC复合材料的显微组织结构及性能进行了对比研究。结果表明:相比真空炉原位合成法,电场作用下Fe-Cu-Ti-C体系能够在较低的温度(754℃)下实现合成反应且反应更加完全;电场下合成试样的相对致密度及显微硬度均高于真空炉下原位合成的试样。在真空炉内原位合成试样时,由于Ti与C反应不完全,生成的TiC颗粒增强相较少,导致其显微硬度低于外加颗粒法制取的试样;当最高加热温度为1000℃时,在真空炉中采用原位合成法及外加颗粒法制得试样的相对致密度没有明显差异。","authors":[{"authorName":"魏仕烽","id":"36af995e-a025-43d3-84fb-ef80579adc80","originalAuthorName":"魏仕烽"},{"authorName":"冯可芹","id":"dca4bfe5-d2b0-446e-b92b-68fbacd4a1d0","originalAuthorName":"冯可芹"},{"authorName":"陈洪生","id":"e028d9c8-f518-4e21-86ea-505dfbf79e82","originalAuthorName":"陈洪生"},{"authorName":"张瑞","id":"04b24652-446b-4449-9cfc-4a05036809e4","originalAuthorName":"张瑞"},{"authorName":"张光明","id":"247277ae-e34e-4449-8da5-5c8b8e12aba9","originalAuthorName":"张光明"},{"authorName":"邓伟林","id":"d9a04781-cca0-46a6-83a5-85e0019efd71","originalAuthorName":"邓伟林"}],"doi":"","fpage":"40","id":"9423650b-149f-4ad3-aac7-bcb6469bb3ee","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"33368a25-3bc2-4949-8337-83fddb76983e","keyword":"Fe-Cu-TiC","originalKeyword":"Fe-Cu-TiC"},{"id":"39b62a35-c293-4671-a87c-1addb3534db5","keyword":"电场","originalKeyword":"电场"},{"id":"fbe27acc-ec90-4ee6-a205-641733041c6e","keyword":"原位","originalKeyword":"原位"},{"id":"ee7e4371-8a63-4fdf-a841-4bb4c47cafce","keyword":"外加颗粒","originalKeyword":"外加颗粒"}],"language":"zh","publisherId":"jsrclxb201211009","title":"TiC颗粒增强Fe-Cu基复合材料制备方法","volume":"33","year":"2012"},{"abstractinfo":"工业纯铁熔体中分别添加平均粒度为80 nm的 TiO2和1.5 μm的 VC颗粒,熔炼后得到铸锭试样.用非水溶液电解法提取试样中的非金属夹杂物,用SEM及EDS研究夹杂物的形貌、成分及存在状态.结果表明,外加的TiO2及VC颗粒与熔体中的原始夹杂物或杂质元素发生作用,形成了一种包裹TiO2或VC颗粒的复合夹杂物,夹杂物内部的颗粒相界面清晰;MnS夹杂物呈斑点或条带状析出,分布或包覆于VC复合夹杂物颗粒的表面.并从热力学上分析TiO2及VC颗粒在熔体中的稳定性.","authors":[{"authorName":"王国承","id":"5e2e0773-6398-4c61-b7f8-9b32783b6961","originalAuthorName":"王国承"},{"authorName":"黄浪","id":"f0eab907-1956-4af5-abc7-4e154d60ca00","originalAuthorName":"黄浪"},{"authorName":"方克明","id":"ecba944f-5eb2-4dc5-88d9-b89c0d71a367","originalAuthorName":"方克明"}],"doi":"","fpage":"17","id":"0da7ea68-5975-4b5e-bce2-4b95e67c4b77","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"7a569e59-92e7-47a1-8e3b-9dbb710ab146","keyword":"工业纯铁熔体","originalKeyword":"工业纯铁熔体"},{"id":"cf7d383e-b016-4dd0-a981-93a7b1a27b7b","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"a6e6b763-4056-4ca3-bc2d-3f81d0fc8c8a","keyword":"VC","originalKeyword":"VC"},{"id":"51fae6ad-78ce-44ab-acdc-dc20938081bc","keyword":"超细颗粒","originalKeyword":"超细颗粒"},{"id":"915504d0-4bf4-4d93-b2bd-bd98ca4ae36b","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"gtft201001004","title":"工业纯铁熔体外加TiO2及VC超细颗粒的试验","volume":"31","year":"2010"},{"abstractinfo":"本文研究了ZrC颗粒加入量对低碳微合金钢组织和力学性能的影响.对试验钢进行了各种力学性能的测试,并用金相显微镜和TEM观察了试验钢的微观组织,用SEM观察了ZrC颗粒的分布状态及拉伸断口形貌.结果表明,加入ZrC颗粒后,试验钢的晶粒都得到了一定程度的细化,当加入ZrC颗粒体积含量为1.1%时,晶粒被细化到5.5μm,此时试验钢的抗拉强度、屈服强度、伸长率、冲击韧性和维氏硬度分别达到635MPa、517.5MPa、20.66%、215.0J/cm2和214 Hv5,获得了最佳综合力学性能;添加ZrC颗粒后,试验钢的组织仍为铁素体,拉伸断口仍为韧窝状;轧制态试验钢中ZrC颗粒分布较为均匀.","authors":[{"authorName":"黄忠东","id":"8058a638-05bb-4dc5-a771-423f092bf254","originalAuthorName":"黄忠东"},{"authorName":"牛建平","id":"db9b889d-97bb-4588-986f-6cc99f47ffb9","originalAuthorName":"牛建平"},{"authorName":"才庆魁","id":"93c4ddca-a418-42b1-8a7e-4be086a62443","originalAuthorName":"才庆魁"},{"authorName":"黄文力","id":"b02855d2-428d-4286-bac8-59e3c997b3f0","originalAuthorName":"黄文力"}],"doi":"","fpage":"637","id":"c3220a5d-a1de-4d5f-bead-4707b3671454","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"81b6d576-fb5f-4406-94e8-94e729ceb4e7","keyword":"低碳微合金钢","originalKeyword":"低碳微合金钢"},{"id":"9bf55911-938a-4492-abd3-f430d1899146","keyword":"微米级ZrC颗粒","originalKeyword":"微米级ZrC颗粒"},{"id":"1dfe6325-0cfe-4f19-8e0c-d02d738c7a08","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"eb76e4bb-6738-4f95-8345-82cb0408c6d8","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"efe788ba-27e5-47b4-a1cb-252ffe790154","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkxygc201005001","title":"外加微米ZrC颗粒对低碳微合金钢组织及性能的影响","volume":"28","year":"2010"},{"abstractinfo":"在高温纯铁熔体中加入平均尺寸为2.7μm的TiN颗粒,熔炼后得到铸锭试样.用扫描电镜(SEM)及能谱(EDS)研究了铸锭金相试样及电解分离出来的非金属夹杂物的形貌、大小及组成.结果显示夹杂物中存在较多的含Ti夹杂,在部分含Ti夹杂物的表面发现有MnS夹杂物,呈白色点状分布或包覆于颗粒表面;另有部分TiN颗粒与熔体中的夹杂物发生了机械复合,形成相界面清晰的复合夹杂物.并从理论上分析了TiN颗粒在纯铁熔体中的热力学稳定性.","authors":[{"authorName":"王国承","id":"d3eb68b1-62eb-4d20-b87d-00f923ea555f","originalAuthorName":"王国承"},{"authorName":"方克明","id":"3b2cb1c1-edc1-46fc-9881-6722427ffede","originalAuthorName":"方克明"},{"authorName":"王铁明","id":"d232cbf0-f46a-4f97-a512-9a0082d87863","originalAuthorName":"王铁明"}],"doi":"10.3969/j.issn.1004-7638.2006.02.005","fpage":"21","id":"9e4c811b-fba2-49b5-9979-ef1f558e8385","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"c2161997-a010-44f3-bcce-4a07d540bd8c","keyword":"纯铁","originalKeyword":"纯铁"},{"id":"e57ba889-9c67-413c-b798-84e1f32e1724","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"15e9a450-f0b9-4156-8196-bac83f1d039b","keyword":"超细颗粒","originalKeyword":"超细颗粒"},{"id":"f27121ff-e8e1-4ebe-a4e0-33e39f3354de","keyword":"热力学","originalKeyword":"热力学"},{"id":"985bcd40-2c45-4677-bd5d-60c22809deb0","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"gtft200602005","title":"高温纯铁熔体中外加氮化钛超细颗粒的研究","volume":"27","year":"2006"},{"abstractinfo":"","authors":[{"authorName":"张新平","id":"34a8ff12-b405-49f9-9678-8ab03123e66e","originalAuthorName":"张新平"},{"authorName":"于思荣","id":"5412e468-e38f-4db2-ba68-60efd7098be1","originalAuthorName":"于思荣"},{"authorName":"何镇明","id":"8790c645-4333-4fe7-a89e-3a326de5edb1","originalAuthorName":"何镇明"}],"doi":"","fpage":"832","id":"f89f6905-ebc0-4e6d-8abb-096334a9ee20","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5fe68123-6d0e-4d0e-a1bb-f6917e5f5bb1","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgysjsxb200006014","title":"离心力场中外加颗粒分布模型","volume":"10","year":"2000"},{"abstractinfo":"在有、无外加磁场的条件下,采用电镀的方法在天然鳞片石墨的表面上镀覆了一层均匀的镍颗粒.分别用扫描电子显微镜、X射线衍射仪及振动样品磁强计对产品进行了分析,研究了外加磁场对镍的沉积形貌、晶体取向及磁性质的影响.结果显示:镍颗粒在无磁场下电沉积时为近球形,在外加磁场下沉积时为刺球形,两者都为面心立方单晶结构,但后者具有较高的饱和磁化强度和较低的矫顽力.这些实验现象表明,外加磁场在镍的沉积过程中对镍的晶体生长有影响.","authors":[{"authorName":"方建军","id":"1e1b2fe6-7567-4257-9b7f-3eb1f490d42b","originalAuthorName":"方建军"},{"authorName":"李素芳","id":"91ead895-1416-400b-8c86-01b80b0c6e12","originalAuthorName":"李素芳"},{"authorName":"查文珂","id":"06c477c4-5980-40fe-aa9f-f74f2434d9ec","originalAuthorName":"查文珂"},{"authorName":"陈宗璋","id":"d3d85d29-a203-4221-bd13-e8fb65462bb3","originalAuthorName":"陈宗璋"}],"doi":"","fpage":"1","id":"baae76fd-b606-4b91-9292-83bb05c6f10d","issue":"9","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"f682e729-818c-4539-8a16-ce1a16743906","keyword":"镍","originalKeyword":"镍"},{"id":"6b0406cd-805e-46bf-8b5a-430d71e5249c","keyword":"石墨","originalKeyword":"石墨"},{"id":"6789beb3-64f6-408f-aff0-4ff5deca7259","keyword":"复合物","originalKeyword":"复合物"},{"id":"fdbd991e-17e2-461a-9111-195fa4a62e09","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"9c99a0d0-d243-4310-803f-2b9ed01fc0d4","keyword":"大钉状镍粒子","originalKeyword":"大钉状镍粒子"},{"id":"7d932de9-0025-4ab7-aa27-27495b15c368","keyword":"磁学","originalKeyword":"磁学"}],"language":"zh","publisherId":"ddyts201009001","title":"电镀法制备镍-天然石墨复合材料及外加磁场的影响","volume":"29","year":"2010"},{"abstractinfo":"主要研究了以h添加剂、m添加剂为主要原料的外加剂对干混砌筑砂浆性能的影响.通过正交设计结果的分析得出外加剂的主要成分对砂浆各种性能的影响,从而得到外加剂的最优配方.","authors":[{"authorName":"叶慧丽","id":"9ce7fb13-b487-459f-9a5f-a8941cd8a8d8","originalAuthorName":"叶慧丽"},{"authorName":"潘钢华","id":"20b86643-798e-422d-aefc-e975e8324aa6","originalAuthorName":"潘钢华"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.069","fpage":"259","id":"584d5d24-15a5-47b2-92b0-b4d266a6c888","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"32da3abb-2bee-4e44-b000-be1b792821e3","keyword":"干混砌筑砂浆","originalKeyword":"干混砌筑砂浆"},{"id":"94464f34-c08e-4369-aa89-d28857eb2cd4","keyword":"工作性","originalKeyword":"工作性"},{"id":"87f76c44-9318-4d3e-a956-984f6850ebae","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"5e274bff-0c4c-43b5-919d-09e8602c4476","keyword":"凝结时间","originalKeyword":"凝结时间"},{"id":"b249df9a-5d59-4456-b7a3-ed4aafc665e6","keyword":"添加剂","originalKeyword":"添加剂"}],"language":"zh","publisherId":"clgc2006z1069","title":"干混砌筑砂浆外加剂的研究","volume":"","year":"2006"},{"abstractinfo":"针对外加纵向磁场GTAW(gas tungsten-arc welding)焊接过程,采用红外热像伪着色法测定了外加纵向磁场GTAW焊接电弧的温度场,并建立了外加纵向磁场GTAW焊接电弧热流密度径向分布模型,对焊接电弧外形的变化,焊接电弧电流、电压与外加纵向磁场强度变化的关系进行了研究.","authors":[{"authorName":"罗键","id":"d2ef7d64-22e3-4bf1-b67e-82a0c8e9e87a","originalAuthorName":"罗键"},{"authorName":"贾昌申","id":"f30f69eb-6fcc-400e-af8f-4603b82d9a2f","originalAuthorName":"贾昌申"},{"authorName":"王雅生","id":"bf93950d-a4d8-4e86-8122-a0681ce29285","originalAuthorName":"王雅生"},{"authorName":"薛锦","id":"e5cdf2e8-af5f-468d-9fd0-0a628d965ee9","originalAuthorName":"薛锦"},{"authorName":"吴毅雄","id":"0c2f60b1-3804-4ae5-a36f-5aa0e95d5b73","originalAuthorName":"吴毅雄"}],"categoryName":"|","doi":"","fpage":"212","id":"744a44fe-9c6e-4892-a2cc-50031704297e","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"da2b94e3-ea6e-4500-b096-4d609092b9ee","keyword":"纵向磁场","originalKeyword":"纵向磁场"},{"id":"38c05e2f-2fe6-4721-9a24-2b5ea7b5a02e","keyword":"null","originalKeyword":"null"},{"id":"cf7060f5-81bf-4fab-9470-9c1bc5db570f","keyword":"null","originalKeyword":"null"},{"id":"2f8409a0-0ae8-44e5-bc29-1a2644cc966a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2001_2_10","title":"外加纵向磁场GTAW焊接机理Ⅰ.电弧特性","volume":"37","year":"2001"},{"abstractinfo":"针对外加纵向磁场GTAW(gas tungsten-arc welding)焊接过程,采用红外热像伪着色法测定了外加纵向磁场GTAW焊接电弧的温度场,并建立了外加纵向磁场GTAW焊接电弧热流密度径向分布模型,对焊接电弧外形的变化,焊接电弧电流、电压与外加纵向磁场强度变化的关系进行了研究.","authors":[{"authorName":"罗键","id":"1367ab29-dd1e-4038-bc2e-e4a6dbe53e4a","originalAuthorName":"罗键"},{"authorName":"贾昌申","id":"1002bfdb-4a3c-4566-a8a4-613916aa22e6","originalAuthorName":"贾昌申"},{"authorName":"王雅生","id":"043f98c6-4d33-46fb-997b-173b74e30a77","originalAuthorName":"王雅生"},{"authorName":"薛锦","id":"5576684e-629a-46c4-8f43-0b98f3462220","originalAuthorName":"薛锦"},{"authorName":"吴毅雄","id":"be592b88-991b-4bca-97d7-7ae68167c559","originalAuthorName":"吴毅雄"}],"doi":"10.3321/j.issn:0412-1961.2001.02.021","fpage":"212","id":"5c17835d-19c7-4b52-9b41-a86f98754af3","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4c7b32cb-fd8f-43fc-853a-18f0344430eb","keyword":"纵向磁场","originalKeyword":"纵向磁场"},{"id":"44046e73-363f-4fcb-857e-abda37ab31ee","keyword":"钨极氩弧焊","originalKeyword":"钨极氩弧焊"},{"id":"bab971aa-9e5c-4679-9d0d-0dc4f09fd789","keyword":"焊接电弧","originalKeyword":"焊接电弧"},{"id":"7bb6707b-31c5-4124-9319-f740e4dfea45","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"jsxb200102021","title":"外加纵向磁场GTAW焊接机理Ⅰ.电弧特性","volume":"37","year":"2001"},{"abstractinfo":"针对外加纵向磁场GTAW(gas tungsten-arc welding)焊接过程,采用小孔气体微压传感器法和钨极探针法分别测定了外加纵向磁场GTAW焊接电弧在水冷Cu阳极板上的等离子流力和电流密度的分布,并对其规律进行了研究,建立了外加纵向磁场GTAW焊接电弧等离子流力和电流密度的径向分布数学物理模型.","authors":[{"authorName":"罗键","id":"06574f73-9f8c-4cc7-94c0-3b0cc80d3c88","originalAuthorName":"罗键"},{"authorName":"贾昌申","id":"66e85048-e88d-4803-b456-c700160d9f92","originalAuthorName":"贾昌申"},{"authorName":"王雅生","id":"92cc8ccf-bcef-4f56-9801-791bb3e1df1c","originalAuthorName":"王雅生"},{"authorName":"薛锦","id":"b8e04f8c-9947-45ca-a999-18412d28df72","originalAuthorName":"薛锦"},{"authorName":"吴毅雄","id":"4ccd0797-56df-4e33-8c71-533a81d3ca59","originalAuthorName":"吴毅雄"}],"categoryName":"|","doi":"","fpage":"217","id":"bbec6233-3a16-4781-87a1-9e1ef245a8ab","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f09ebe18-cf31-436b-bc25-9e769b8012eb","keyword":"纵向磁场","originalKeyword":"纵向磁场"},{"id":"31479a8e-70c0-405d-b3e9-c7d79f22198b","keyword":"null","originalKeyword":"null"},{"id":"9eca2277-9d3b-40e1-b1f1-6facfbb218e0","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2001_2_3","title":"外加纵向磁场GTAW焊接机理Ⅱ.电弧模型","volume":"37","year":"2001"}],"totalpage":1646,"totalrecord":16453}