{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"冷轧TWIP钢经1073,1173,1273和1373 K固溶处理10 min后,得到了晶粒尺寸分别为7,13,30和63 μm的奥氏体组织.拉伸实验表明,随着晶粒尺寸的增加,加工硬化速率(da/dε)与真应变(ε)的变化关系由2阶段变为3阶段.当晶粒尺寸大于30 μm时,加工硬化速率与真应变关系中的第2阶段对应的应变长度随着晶粒尺寸的增加而迅速增加.当真应变为0-0.2时,加工硬化指数随真应变的增加而迅速增加;在随后的变形中,与上述4个晶粒尺寸对应的试样的加工硬化指数分别稳定在0.47,0.53,0.56和0.68.OM和TEM观察显示,随晶粒尺寸的增大,变形过程中形变孪晶数量增多.对于较大晶粒尺寸的试样,形变孪晶在拉伸变形过程中形核的临界应力较低,随变形量增加,形变孪晶可持续形成,使其加工硬化能力增加,从而增大了TWIP效应;相反,晶粒尺寸减小使变形过程中的形变孪晶形核临界应力增大,抑制形变孪晶的产生,从而减小了TWIP效应.","authors":[{"authorName":"王书晗","id":"3325d0a6-7c47-4a02-b97e-783537fd2844","originalAuthorName":"王书晗"},{"authorName":"刘振宇","id":"0a99d2cc-0e8c-4ed4-bc81-d20a04657c3e","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"b2a57881-6a11-4587-a550-c5fdb1200db5","originalAuthorName":"王国栋"}],"doi":"10.3321/j.issn:0412-1961.2009.09.010","fpage":"1083","id":"3d18f1c7-9b42-46f4-b842-dfb5aef934b9","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"12f4aa12-d21a-42b8-87e9-8b53124150cd","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"0f64d783-8249-4e76-9d3e-95803ab49fd4","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"9aed1e3c-3124-4edd-b059-489d304754d1","keyword":"加工硬化速率","originalKeyword":"加工硬化速率"},{"id":"3512615a-3a6f-4f87-8e23-82f433e1cebb","keyword":"加工硬化指数","originalKeyword":"加工硬化指数"},{"id":"ec00c487-a5d9-4436-8dad-394f3702709b","keyword":"TWIP效应","originalKeyword":"TWIP效应"}],"language":"zh","publisherId":"jsxb200909010","title":"TWIP钢中晶粒尺寸对TWIP效应的影响","volume":"45","year":"2009"},{"abstractinfo":"综述了孪生诱发塑性(TWIP)钢的研究进展,重点介绍了产生TWIP效应的关键在于低温时具有稳定的奥氏体组织和较低的层错能,主要合金元素对TWIP钢组织和性能的影响,层错能及其计算,第一、二代TWIP钢的力学性能以及温度、应变速率和加工工艺对其力学性能的影响,孪生诱发塑性的微观机制.","authors":[{"authorName":"李海昭","id":"cc51499f-d3d1-4e3d-83a8-3124466a3b17","originalAuthorName":"李海昭"},{"authorName":"王瑞珍","id":"8501c1f6-6ab0-4b58-bf84-8de20e06ba4a","originalAuthorName":"王瑞珍"},{"authorName":"代建清","id":"4eef9267-8db4-4b10-83a3-0e8cdc8615c5","originalAuthorName":"代建清"},{"authorName":"崔岩","id":"a6e29b41-87f0-4152-99ea-32384ac8bcb3","originalAuthorName":"崔岩"}],"doi":"","fpage":"1","id":"339b565a-2dde-491d-9549-180e8cf30dc4","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"c89de184-9f7f-46ba-bf54-d411031e69d2","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"afd0eb3e-9999-4080-a6f2-f6ee98221d30","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"6214c078-cbb7-48b1-bdf8-f2de436496f7","keyword":"层错能","originalKeyword":"层错能"},{"id":"a9c38fc4-22b3-4263-910b-9d33dc5d26b9","keyword":"形变孪晶","originalKeyword":"形变孪晶"}],"language":"zh","publisherId":"wlcs201001001","title":"孪生诱发塑性(TWIP)钢的研究进展","volume":"28","year":"2010"},{"abstractinfo":"对3种不同锰含量的高锰奥氏体钢进行了低温冲击实验,分析了其冲击变形行为.实验结果表明:在-196~20℃温度区间冲击时,w(Mn)=14.8%(1号)的高锰钢均为脆性断裂,冲击过程中发生了形变诱发塑性(TRIP效应);w(Mn)=33.0%(3号)的高锰钢,即使在-196℃冲击时,仍呈现出韧性断裂,冲击过程中出现了形变诱导孪晶(TWIP效应);w(Mn)=18.8%(2号)的高锰钢有韧脆转变区间,韧脆转变温度约为-80℃,在冲击过程中同时存在TRIP和TWIP效应.随冲击温度降低,TRIP和TWIP效应更显著.","authors":[{"authorName":"丁昊","id":"e5961403-a376-461a-a0fb-6f249182e7ab","originalAuthorName":"丁昊"},{"authorName":"丁桦","id":"aa3ee85c-016d-4658-a57e-f0301138de75","originalAuthorName":"丁桦"},{"authorName":"唐正友","id":"09090bac-c735-4158-abf1-c3b6df31c941","originalAuthorName":"唐正友"},{"authorName":"曾建敏","id":"37686fe8-0da5-42f4-b9be-eeb4c0a76244","originalAuthorName":"曾建敏"},{"authorName":"杨平","id":"1ba10d34-8fd4-445e-8fb9-1295413c1480","originalAuthorName":"杨平"}],"doi":"","fpage":"42","id":"548757c5-fbd0-4860-935b-ce8764e580a4","issue":"7","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"950df1b5-02c2-48dc-96e3-3d9e2a09e47c","keyword":"高锰奥氏体钢","originalKeyword":"高锰奥氏体钢"},{"id":"cb194ce9-cbe4-4cac-ad31-6c7af580951d","keyword":"冲击实验","originalKeyword":"冲击实验"},{"id":"e0181e86-69f7-491a-ad58-197fb422918e","keyword":"TRIP效应","originalKeyword":"TRIP效应"},{"id":"14ec79b4-c2bb-4bdd-b5a9-4981e41e245d","keyword":"TWIP效应","originalKeyword":"TWIP效应"}],"language":"zh","publisherId":"gtyjxb200907011","title":"锰含量对奥氏体TRIP/TWIP钢低温冲击行为的影响","volume":"21","year":"2009"},{"abstractinfo":"研究了Fe-Mn-C系TWIP钢的组织和性能,结果表明钢板经热轧-冷轧-热处理后,钢板可达到有57.3%的延伸率, 480 MPa的屈服强度和1140 MPa的抗拉强度.其室温组织为单相奥氏体基体并伴有退火孪晶,拉伸变形后通过XRD检测和TEM观察发生了少量的γ→α和γ→ε→α相变同时内部有大量的滑移带和变形孪晶共存.即Fe-Mn-C系TWIP钢变形时同时有TRIP效应、TWIP效应,使钢板具有优良的力学性能.","authors":[{"authorName":"代永娟","id":"91ae935b-c9f8-46c8-b456-e32534be292b","originalAuthorName":"代永娟"},{"authorName":"米振莉","id":"6ac4f879-826e-47ae-8301-ac41f76f025c","originalAuthorName":"米振莉"},{"authorName":"唐荻","id":"14f4dfd3-3200-4193-b1f6-5d0e23979412","originalAuthorName":"唐荻"},{"authorName":"江海涛","id":"5bf0954f-a263-4091-aad3-cc8a9d2e1552","originalAuthorName":"江海涛"},{"authorName":"李慎升","id":"40a7cca8-8055-4e54-a67c-0aacd7edf084","originalAuthorName":"李慎升"}],"doi":"10.3969/j.issn.1001-7208.2007.05.025","fpage":"132","id":"89af0925-5e36-448b-9db7-16555a402aab","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"057114c5-3d71-4831-a780-91fb74215843","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"c0b8611b-7715-492e-a60f-2c6de3ab136d","keyword":"形变孪晶","originalKeyword":"形变孪晶"},{"id":"e1ac9f4c-5611-435d-8b72-e77448d561df","keyword":"层错能","originalKeyword":"层错能"},{"id":"626e8975-690b-462b-a499-39d13437c0f5","keyword":"TRIP效应","originalKeyword":"TRIP效应"}],"language":"zh","publisherId":"shjs200705025","title":"Fe-Mn-C系TWIP钢的组织和性能","volume":"29","year":"2007"},{"abstractinfo":"通过金相显微镜和透射电镜分析研究了退火态TWIP钢的微观结构特征.结果表明,经过600 ℃退火10 min后钢中存在冷轧的纳米级变形孪晶及少量位错;分别在700、800、900和1000℃退火10 min后,发现退火温度决定了退火孪晶的尺寸:随退火温度升高,退火孪晶尺寸增大.退火孪晶仅有少量在再结晶过程中产生,而大量的退火孪晶在再结晶结束后的晶粒长大过程中生成并长大.退火孪晶尺寸的大小影响了TWIP钢的力学性能,孪晶尺寸为2~5 μm时,试验钢表现出高强度,此时抗拉强度可达840 MPa;孪晶尺寸为30~50 μm时,试验钢表现出高的伸长率,可达到84.0%,表现出充分的TWIP效应.","authors":[{"authorName":"代永娟","id":"0fe87f9a-b7b5-4449-9271-216c21d0bf8d","originalAuthorName":"代永娟"},{"authorName":"米振莉","id":"46dbb023-1b07-4922-84d2-46cad5872625","originalAuthorName":"米振莉"},{"authorName":"唐荻","id":"99177ca9-55fb-4120-884c-6c3a145fad46","originalAuthorName":"唐荻"},{"authorName":"吕建崇","id":"67316527-096e-44cc-b518-7b3016412840","originalAuthorName":"吕建崇"}],"doi":"","fpage":"56","id":"84c60454-1db2-4933-8866-901823e9ea24","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"970492d3-c03c-4f1e-a2a6-b8775bfdc360","keyword":"退火温度","originalKeyword":"退火温度"},{"id":"a7e54168-7642-4fc4-8ee6-8ac249ccfefc","keyword":"退火孪晶","originalKeyword":"退火孪晶"},{"id":"60e8929b-a6d7-43be-844e-4630d1d740c3","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"a0cfce58-aac2-45f9-966b-4d3e399515d0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201011012","title":"Fe-Mn TWIP钢退火态的微观结构特征","volume":"31","year":"2010"},{"abstractinfo":"研究了TWIP钢Fe-23Mn-2A1-0.2C固溶处理后的组织演变和拉伸变形行为,并对其变形机制进行了探讨。结果表明:随固溶温度升高,实验钢的晶粒尺寸逐渐增大,屈服强度和抗拉强度均降低,伸长率增大,强塑积先增大后减小,在900oC时达到最高;实验钢的拉伸变形呈现连续屈服,同时随固溶温度升高,加工硬化速率(dtr/d6)与真应变(8)的变化关系由2阶段变为3阶段。通过OM和TEM观察显示,随着晶粒尺寸的增加,变形过程中形变孪晶数量增多,孪晶诱导塑性(TWIP)效应增大。","authors":[{"authorName":"秦小梅","id":"904ee2c1-80f4-42c2-bf70-4ff4378d60d2","originalAuthorName":"秦小梅"},{"authorName":"邸洪双","id":"2d72a401-f077-4d90-9bb8-3d6f2523bfa4","originalAuthorName":"邸洪双"},{"authorName":"陈礼清","id":"deac065f-f383-4aba-8e25-f60282e718de","originalAuthorName":"陈礼清"},{"authorName":"邓伟","id":"960bf0be-d6f8-44f5-b1b7-1e8e070dbc4e","originalAuthorName":"邓伟"}],"doi":"","fpage":"94","id":"8ae2de0b-f91f-4e58-95ff-ace39c728655","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"cfd9326b-5c21-4257-bd39-a16bc2a76691","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"18d0718d-4771-406e-ac3c-1e5d76714694","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"342921ce-90be-46ce-b43d-eb73b1da180e","keyword":"加工硬化速率","originalKeyword":"加工硬化速率"},{"id":"15b78d61-62ef-4a98-a961-b00229cd3550","keyword":"TWIP效应","originalKeyword":"TWIP效应"}],"language":"zh","publisherId":"jsrclxb201201018","title":"TWIP钢Fe.23Mn-2Al-0.2C的组织及拉伸变形机制","volume":"33","year":"2012"},{"abstractinfo":"研究了两种不同锰含量的高锰奥氏体钢在室温拉伸变形过程中力学性能和组织的变化.结果表明,随着钢中锰含量的变化,实验钢在流变应力的作用下出现相变诱导塑性的TRIP效应和孪晶诱导塑性的TWIP效应.在1×10-3 s-1的初始应变速率条件下,锰的质量分数为23.8%的实验钢可达到666 MPa的抗拉强度和67%的伸长率,而锰的质量分数为33%的实验钢可达到540 MPa的抗拉强度和97%的伸长率.并且在10-3~10-1 s-1的初始应变速率范围内,实验钢的抗拉强度对于流变应力不敏感,而实验钢的塑性则表现出一定的应变速率敏感性.由于该钢具有较好的综合力学性能,有望作为新一代高强度、高塑性汽车用钢.","authors":[{"authorName":"李卫","id":"8b9916e8-2783-49da-b08e-da84fdb0a8b7","originalAuthorName":"李卫"},{"authorName":"唐正友","id":"7638f1b2-5be6-4aba-ae6f-d14e603100fb","originalAuthorName":"唐正友"},{"authorName":"王玫","id":"a0a19e48-04eb-49f5-bdbd-a6eb7dfc4a40","originalAuthorName":"王玫"},{"authorName":"丁桦","id":"5450348f-9810-42bc-8aa7-f330f8bdf22f","originalAuthorName":"丁桦"},{"authorName":"杨平","id":"d94feeef-8ef7-425d-a0c6-73d65563b385","originalAuthorName":"杨平"}],"doi":"","fpage":"71","id":"89d64eb4-7770-429b-a8b7-6fdc0e0e8f65","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a82792db-8c87-4275-a31c-4b88419daab3","keyword":"高锰奥氏体钢","originalKeyword":"高锰奥氏体钢"},{"id":"07ff05f4-f9bb-4acf-a3f2-49471efba2e2","keyword":"TRIP效应","originalKeyword":"TRIP效应"},{"id":"5077fa6c-d389-4465-8734-89f1be25d877","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"81401a7b-cdb2-45a4-abf5-3b54c5108405","keyword":"应变速率敏感性","originalKeyword":"应变速率敏感性"},{"id":"dadfeed4-e55f-47ad-8229-7000073fe6be","keyword":"汽车用钢","originalKeyword":"汽车用钢"}],"language":"zh","publisherId":"gt200701017","title":"高锰奥氏体TRIP/TWIP钢的组织和力学性能","volume":"42","year":"2007"},{"abstractinfo":"高强度高塑性是汽车用钢发展的主要趋势.Fe-Mn-Al-Si系TRIP/TWIP钢、Fe-Mn-C系TWIP钢和Fe-Mn-Al-C钢具有高的强度、优良的塑性和成形性,为新一代汽车材料.近年来,这些奥氏体汽车用钢的研究与开发受到了高度重视.本文对高锰TRIP/TWIP钢的组织性能、晶体学行为、强韧化机制、应变硬化行为和高速变形方面的研究工作进行了综述.","authors":[{"authorName":"丁桦","id":"5e6fe755-7e1f-4c2f-89d2-aeff51b9d117","originalAuthorName":"丁桦"},{"authorName":"杨平","id":"e81e7f0b-ad08-4f07-8cf9-36be8f30e159","originalAuthorName":"杨平"}],"doi":"10.3969/j.issn.1671-6620.2010.04.007","fpage":"265","id":"9a0de8e9-3df8-4460-8d41-b879d1f9c290","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"a7b43cd7-0d82-4c32-a0d0-2a2038898754","keyword":"高锰钢","originalKeyword":"高锰钢"},{"id":"ab8812e3-2714-4413-bef7-631a24d322a7","keyword":"TRIP效应","originalKeyword":"TRIP效应"},{"id":"8de714e3-dd11-48b8-b33b-a70b45cd03e6","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"50a4f398-b03d-4b46-a6a2-db89003be13c","keyword":"层错能","originalKeyword":"层错能"},{"id":"f759f25a-b909-4ea5-9975-181481847292","keyword":"组织演变","originalKeyword":"组织演变"},{"id":"67279992-1297-4126-8920-46359e8d40db","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clyyjxb201004007","title":"高锰TRIP/TWIP钢变形行为的研究进展","volume":"09","year":"2010"},{"abstractinfo":"采用热力学计算以及XRD分析技术对18Mn-Si系TWIP钢的层错能进行了研究。结果表明,18Mn-Si系TWIP钢在淬火状态下为全奥氏体组织,拉伸变形以后出现变形孪晶和α马氏体相;该钢种的层错几率和层错能分别为2.6×10-3、17.3 mJ/m2,说明其在拉伸应力作用下将同时发生TWIP效应和TRIP效应,该结论与实验结果相吻合;对于18Mn-Si系TWIP钢而言,其在298 K条件下层错能(SFE)和层错几率(Psf)存在如下关系,即,SFE(298 K)=4.498×10-2/Psf。","authors":[{"authorName":"陆惠菊","id":"084c63a9-ba0b-4913-933e-0e57958c96ae","originalAuthorName":"陆惠菊"},{"authorName":"朱娜琼","id":"f1907cb1-9f37-4127-a37f-309246bbafaf","originalAuthorName":"朱娜琼"},{"authorName":"何燕霖","id":"54fc4f16-bdcd-43f5-b01e-a07f3f0efd4e","originalAuthorName":"何燕霖"},{"authorName":"李麟","id":"110152b6-457c-4389-9f72-b5aeefbbca81","originalAuthorName":"李麟"}],"doi":"","fpage":"155","id":"bdc0e14b-2063-4a0f-b384-a5315b1ca350","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"0351c2f3-3a96-48ca-a669-0bf5cd76e084","keyword":"层错能","originalKeyword":"层错能"},{"id":"d22b88ed-c44b-48a5-b2dd-6f68f1a787ee","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"21e39f0e-5c80-45d7-b1e7-fc78ab177169","keyword":"TRIP效应","originalKeyword":"TRIP效应"}],"language":"zh","publisherId":"jsrclxb201112031","title":"18Mn-Si系TWIP钢层错能的计算与实验","volume":"32","year":"2011"},{"abstractinfo":"通过微拉伸、电子背散射(EBSD)、透射电子显微镜(TEM)等手段,研究了具有亚稳奥氏体相的节约型双相不锈钢在1000~1200℃范围内不同固溶温度下的组织与性能的演变规律;探讨了固溶温度对形变诱导塑性(TRIP/TWIP)的作用机制.结果表明,随着固溶温度的升高,抗拉强度与伸长率均先升高后降低,而亚稳奥氏体相比例由74%(1000℃)降低到37%(1200℃);1050℃固溶时,试验钢表现出最佳综合性能,抗拉强度达到960 MPa,伸长率达到62%,强塑积达到60 GPa·%.在经拉伸变形的微观结构中形变诱导马氏体与形变孪晶共存,表明试验钢中亚稳奥氏体相的变形机制主要受TRIP及TWIP共同控制,从而导致其塑性变形过程呈现多阶段应变硬化特征,而钢中铁素体相的变形机制主要变形为位错的滑移.","authors":[{"authorName":"陈雷","id":"75df9ee9-a9aa-41cc-a3a3-6f2c9d7abc67","originalAuthorName":"陈雷"},{"authorName":"张英杰","id":"66ab3e89-6d19-44bd-ab65-bc9e91a6fdbd","originalAuthorName":"张英杰"},{"authorName":"李飞","id":"65ea6930-eef6-4ac1-8686-0e352225213a","originalAuthorName":"李飞"},{"authorName":"裴建明","id":"eb649663-6d40-4b91-a648-dd6dc2a574d3","originalAuthorName":"裴建明"},{"authorName":"宋雷钧","id":"1058626f-9d3e-49b6-9714-130bd7f270a8","originalAuthorName":"宋雷钧"},{"authorName":"金淼","id":"6ffe2af6-418d-4d2f-8ed5-853a94a6ad14","originalAuthorName":"金淼"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160350","fpage":"55","id":"d9e0398a-c026-41f3-aed2-960e98fec411","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b89ba62c-9b54-4f03-856e-e542befed224","keyword":"节约型双相不锈钢","originalKeyword":"节约型双相不锈钢"},{"id":"49d67c42-6e3c-4873-89a1-977d58db490f","keyword":"固溶温度","originalKeyword":"固溶温度"},{"id":"ce8355ee-8066-469b-8a1d-556bcc28b30d","keyword":"TWIP效应","originalKeyword":"TWIP效应"},{"id":"6c426a0f-f02f-48aa-a174-9f0f556dbf5d","keyword":"TRIP效应","originalKeyword":"TRIP效应"},{"id":"e10ff468-2678-4fd4-b3c9-de87fd8edd23","keyword":"加工硬化","originalKeyword":"加工硬化"}],"language":"zh","publisherId":"gt201704012","title":"固溶温度对节约型双相不锈钢TRIP/TWIP行为的影响","volume":"52","year":"2017"}],"totalpage":922,"totalrecord":9218}