{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"设计了3种不同的装罐方法,通过改变试样与渗剂的接触方式,对固体渗时渗剂中活性原子输运到试样表面的方式进行了研究.结果表明,固体渗时,渗剂中有BF2和BF3气体生成,活性原子通过BF2在试样表面的吸附和分解以及在渗剂中的直接扩散这样两种方式输运至试样表面,其中活性原子在渗剂中的直接扩散是主要输运方式.BF2在渗中的主要作用是充当了还原剂的作用,通过它和BF3间的循环反应,将硼砂中的氧化源源不断地还原成活性原子,同时它在渗剂中的吸附和分解也加快了渗剂中活性原子的生成速度.","authors":[{"authorName":"章为夷","id":"6274cbb6-ac28-4a94-b4f6-fd4d45c356ec","originalAuthorName":"章为夷"}],"doi":"10.3969/j.issn.1009-6264.2003.02.008","fpage":"29","id":"4fcefe86-4102-445b-ac7e-0b38e511ed06","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"17226614-f1c6-4f13-87c7-f03e298a17ca","keyword":"固体渗","originalKeyword":"固体渗硼"},{"id":"6f10b701-4a19-4671-8a56-bd8cafc0c08b","keyword":"活性原子","originalKeyword":"活性硼原子"},{"id":"6ff3b77f-c9c9-4797-89e9-fefb31376312","keyword":"输运方式","originalKeyword":"输运方式"},{"id":"2c7617c7-efaf-432e-aaa4-aa0e437a0fbd","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"jsrclxb200302008","title":"固体渗时硼砂型渗剂中活性原子输运方式研究","volume":"24","year":"2003"},{"abstractinfo":"提出了溶剂萃取-火焰原子吸收光谱法间接测定钢中和磷的分析方法.在弱酸性介质中硼酸、苯羟乙酸、铁(Ⅱ)以及邻二氮菲能形成稳定的多元离子缔合物,被1,2-二氯乙烷萃取后再用去离子水反萃取,然后测定水相化合物中的铁;在盐酸介质中,磷酸根与钼酸铵形成磷钼杂多酸,被甲基异丁基甲酮萃取后,测定有机相磷钼杂多酸中的钼.并可分别间接测定和磷.在优化的反应条件下,和磷的质量浓度分别在0.12~3.24及0.04~1.00mg/L范周内时,吸光度与质量浓度之间具有良好的线性关系,和磷的检出限分别为0.036和0.015mg/L.以8份样品空白进行测定,得和磷的标准偏差分别为1.2%和0.5%.方法用于钢样中微量和磷的测定,拓展了原子吸收分光光度计的应用范围.","authors":[{"authorName":"陆建平","id":"c24eebd7-3dff-4352-ac8a-5df77bee417e","originalAuthorName":"陆建平"},{"authorName":"彭剑","id":"73c921c8-a7f4-48de-a587-11e85a82ab30","originalAuthorName":"彭剑"},{"authorName":"王益林","id":"4556b7e2-2593-4bec-8f75-1143d4fcde9e","originalAuthorName":"王益林"},{"authorName":"石建荣","id":"3eb8f320-37f7-4f49-8396-13f0afbe5d9c","originalAuthorName":"石建荣"},{"authorName":"曹家兴","id":"d0caa2ff-77f8-418f-a8f5-25f1c39fd808","originalAuthorName":"曹家兴"}],"doi":"10.3969/j.issn.1000-0518.2008.06.020","fpage":"710","id":"1ac3077b-a492-468d-bcc5-cf8d1bf696bc","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"717acd5c-bc8c-465f-96c8-1570eeadc0ab","keyword":"火焰原子吸收法","originalKeyword":"火焰原子吸收法"},{"id":"b931187e-2f13-45c6-970b-7562e3eaae2b","keyword":"钢","originalKeyword":"钢"},{"id":"87202769-d298-4029-b9e1-716261fa1891","keyword":"","originalKeyword":"硼"},{"id":"a2be5724-a43d-421b-8b8f-7ada3606c3fd","keyword":"磷","originalKeyword":"磷"}],"language":"zh","publisherId":"yyhx200806020","title":"火焰原子吸收法间接测定钢中和磷","volume":"25","year":"2008"},{"abstractinfo":"依据LI2型金属间化合物八面体,四面体间隙的特点,并利用硬球模型计算了上述各类间隙的空球半径大小,发现Ni3Al合金中6Ni八面体间隙空球半径比其他间隙大,使原子更易进入6Ni八面体间隙由于富Ni-Ni3Al合金晶界比富Al-Ni3Al合金有更多的6Ni八面体间隙,所以在富Ni-Ni3Al晶界偏聚较多另外富Al-Ni3Al合金晶界原子间作用力比富Ni-Ni3Al合金晶界原子间作用力大,这也阻碍了进入富Al-Ni3Al晶界。","authors":[{"authorName":"李卫民","id":"95622ad6-d450-4871-8f2e-d747cf8fac42","originalAuthorName":"李卫民"},{"authorName":"张迎九","id":"7fec7fa3-a260-4323-97b0-dc3a44056583","originalAuthorName":"张迎九"},{"authorName":"唐仁正","id":"14dd47ee-1d02-411c-843a-4bb3460083f3","originalAuthorName":"唐仁正"},{"authorName":"谢佑卿","id":"b9f39f67-631b-496f-b18a-f03bd701c57c","originalAuthorName":"谢佑卿"}],"categoryName":"|","doi":"","fpage":"497","id":"6208a828-fa44-4b86-a85a-2b2765298f6d","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"8805e49f-2099-468a-895e-5d5a37762117","keyword":"Ni_3Al","originalKeyword":"Ni_3Al"},{"id":"16db90ef-d679-4aa9-b5e2-655fb6a112a6","keyword":"null","originalKeyword":"null"},{"id":"a3edde04-8968-4fca-8a65-c25535631b5b","keyword":"null","originalKeyword":"null"},{"id":"8465f36d-2c72-4d38-bf41-9b8457274ed8","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_1996_5_14","title":"Ni_3Al合金原子占位及晶界偏聚","volume":"10","year":"1996"},{"abstractinfo":"提出一种计算溶质原子-空位复合体扩散系数的方法.该方法通过分析晶界偏聚过程中溶质原子.空位复合体的扩散机制,建立溶质原子-空位复合体变温扩散方程,以实验测定的连续冷却过程偏聚阶段溶质贫化区宽度为已知条件,数值求解溶质原子.空位复合体扩散系数.将此方法应用于含硼1×10-5%(质量分数)Fe-40%Ni-B合金体系,得到原子-空位复合体扩散系数为8.0×10-7exp(-1.28/KT)(m2·s-1).","authors":[{"authorName":"吴平","id":"02702e45-16c0-4462-8f41-3538a200ef18","originalAuthorName":"吴平"},{"authorName":"陈森","id":"04cb0893-eaec-43ca-a0e6-89b47dd5d2d8","originalAuthorName":"陈森"},{"authorName":"巨新","id":"b10317d3-61df-4558-b723-e2429f8d7450","originalAuthorName":"巨新"},{"authorName":"唐文斌","id":"4ad0ed3b-9dcb-41a3-b76a-61a63d61fb01","originalAuthorName":"唐文斌"},{"authorName":"贺信莱","id":"5bc3952b-4d44-49ca-81b4-4074ceb15202","originalAuthorName":"贺信莱"}],"doi":"10.3969/j.issn.0258-7076.2009.03.002","fpage":"299","id":"067cb6bd-d880-4a99-8214-8a0ef9553b00","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"6d6be668-0a29-43b3-8216-bcb66da2dfd9","keyword":"复合体","originalKeyword":"复合体"},{"id":"9c3d107f-f717-4fd2-9cbf-a1c823df681d","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"99f82d27-ffba-487b-a4e8-eb9aad173b14","keyword":"偏聚","originalKeyword":"偏聚"},{"id":"13753f10-68e9-42da-b02c-97eb93c9fd0f","keyword":"晶界","originalKeyword":"晶界"},{"id":"9701c569-baf9-40a0-bdac-c71750a05c36","keyword":"","originalKeyword":"硼"}],"language":"zh","publisherId":"xyjs200903002","title":"铁镍合金中原子-空位复合体扩散系数的计算","volume":"33","year":"2009"},{"abstractinfo":"研究了含锶硅酸盐玻璃的体外生物活性和降解性.采用熔融法制备不同锶含量(SrO含量为0、2%、4%、6%、8%、10%、12%(摩尔分数))的硅酸盐生物玻璃粉末,粒径范围为150~300μm.将各组玻璃样品浸泡在0.02mol/L的K_2HPO_4溶液中,置于37℃恒温条件下,进行体外生物矿化反应.通过对反应样品的质量损失以及浸泡液pH值进行测定,并用XRD、FTIR以及SEM对反应过程和反应后产物进行表征.结果表明,含锶的硅酸盐玻璃在体外生物矿化反应中被生物降解,并转化为含锶羟基磷灰石,具有很好的生物活性和降解性;同时也观察到玻璃中引入锶元素后,在一定程度上控制玻璃的降解速度,进而控制的溶出速度,从一定程度上避免溶出速度过高可能带来的风险;ICP的结构也表明,当SrO为6%(摩尔分数),样品中元素溶出的速度最低.因此,用锶的含量可控制硅酸盐玻璃的降解速度,这种方法将在组织工程领域具有广阔的应用前景.","authors":[{"authorName":"赵寅生","id":"81046d7b-4d83-41de-94e5-274a5f459892","originalAuthorName":"赵寅生"},{"authorName":"张欣","id":"c6f22991-15be-4891-bff0-3290304d9e6c","originalAuthorName":"张欣"},{"authorName":"向卫东","id":"f19f4e05-6599-4d89-9a65-aa8c62160b92","originalAuthorName":"向卫东"},{"authorName":"王德平","id":"5bc0234a-7759-43ca-b237-3e6bb040ac92","originalAuthorName":"王德平"},{"authorName":"黄文旵","id":"2a32c3a6-28a7-4c9b-ad78-7e0c2d14914d","originalAuthorName":"黄文旵"},{"authorName":"潘浩波","id":"95beff96-3d12-46c9-a29a-3478ca71dfe2","originalAuthorName":"潘浩波"},{"authorName":"吕维加","id":"3c5d446e-97a5-46c0-9f79-f2debe558f60","originalAuthorName":"吕维加"}],"doi":"","fpage":"439","id":"12e27e5d-05e5-4569-8df6-fc340127f50a","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1d529c13-ead0-4df3-9bb2-402b3f10cec2","keyword":"氧化锶","originalKeyword":"氧化锶"},{"id":"0ba6b2cb-e010-4c94-9caa-fd3296fbf4dd","keyword":"硼酸盐生物玻璃","originalKeyword":"硼酸盐生物玻璃"},{"id":"c77acf26-b84c-4680-9d0a-4c5e4d8f0b46","keyword":"生物降解性","originalKeyword":"生物降解性"},{"id":"d39ec232-43e8-468e-99d4-71de71a6c9fc","keyword":"生物活性","originalKeyword":"生物活性"}],"language":"zh","publisherId":"gncl201003021","title":"含锶硅酸盐生物玻璃的降解性能及体外生物活性","volume":"41","year":"2010"},{"abstractinfo":"高镁低硅镁石矿火法炼镁的实验中,煅烧生矿生成的氧化镁对金属镁的回收率有重要影响.为了得到高活性氧化镁,首先利用差热-热重法分析了高镁低硅型镁石矿的受热分解情况,然后测定了在选定煅烧温度及不同恒温时间下镁石矿的烧失率和灼减量,并利用柠檬酸法测定氧化镁的活性度,利用X射线衍射分析了在煅烧温度1 223 K、恒温1.0 h后矿石发生烧结.最终确定得到高活性氧化镁的镁石矿的煅烧温度范围在1 173~1 223 K、恒温0.5~1.0 h.最佳煅烧条件为煅烧温度1 223 K、恒温0.5 h.","authors":[{"authorName":"徐冬","id":"cfc617eb-1d69-4c26-95a3-08882c15d1fa","originalAuthorName":"徐冬"},{"authorName":"李刚","id":"6966f541-0c1f-46d4-b205-9397753d6d63","originalAuthorName":"李刚"},{"authorName":"张显鹏","id":"9dc911cc-b7e7-4995-9994-173c2b609565","originalAuthorName":"张显鹏"},{"authorName":"郭清富","id":"799375dd-73b1-433d-abbe-51fbf307528c","originalAuthorName":"郭清富"},{"authorName":"马丽红","id":"dfaf2763-7948-4c57-b364-aaebb69af576","originalAuthorName":"马丽红"}],"doi":"10.3969/j.issn.1671-6620.2007.02.010","fpage":"122","id":"6602986c-e12c-4ff4-a10d-23e99ee9a946","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"ad2f8feb-b9ba-4693-a8e6-49acdbacb6d0","keyword":"镁石矿","originalKeyword":"硼镁石矿"},{"id":"b29a054a-9d34-49e2-b5ac-8d1bf0ec3b9e","keyword":"煅烧","originalKeyword":"煅烧"},{"id":"994530df-de00-4104-a181-a0236ab88807","keyword":"氧化镁","originalKeyword":"氧化镁"},{"id":"1f68e929-b680-4985-b6f7-b44126465bda","keyword":"活性","originalKeyword":"活性"}],"language":"zh","publisherId":"clyyjxb200702010","title":"利用镁石矿煅烧高活性氧化镁的试验研究","volume":"6","year":"2007"},{"abstractinfo":"采用电感耦合等离子体原子射光谱法(ICP-AES)代替传统的化学分析方法,建立了快速测定非晶合金中的高含量的方法.对样品的处理方法和测试条件进行研究.结果表明:试样用王水溶解后,加入氢氟酸,继续在90℃水浴中加热溶解试样,试样溶解完全,实现了对难溶合金中B元素的快速测定.在选择的分析线为182.640 nm下测定,共存元素没有干扰,基体铁和钴的干扰采用基体匹配方法消除.通过回收试验及精密度试验,证明方法有较高准确度和精密度,分析周期比化学法短.","authors":[{"authorName":"崔黎黎","id":"a5f7a8fd-de97-43fe-823f-c4774127832d","originalAuthorName":"崔黎黎"},{"authorName":"张立新","id":"87592734-caaf-41a3-aa75-4b3053e72da1","originalAuthorName":"张立新"}],"doi":"10.3969/j.issn.1000-7571.2010.02.013","fpage":"58","id":"ac337648-a0ec-4cd6-8ee8-cb2e6e4c1282","issue":"2","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"297dd11e-6650-44c8-bf2b-360995bad4c4","keyword":"电感耦合等离子体原子发射光谱法","originalKeyword":"电感耦合等离子体原子发射光谱法"},{"id":"c56998ce-c97d-4f53-9bdd-6e0fcf282f26","keyword":"非晶合金","originalKeyword":"非晶合金"},{"id":"aace3455-1df2-48b0-a63a-1ed7c892c175","keyword":"","originalKeyword":"硼"}],"language":"zh","publisherId":"yjfx201002013","title":"电感耦合等离子体原子发射光谱法测定非晶合金中高含量","volume":"30","year":"2010"},{"abstractinfo":"研究了用电感耦合等离子体原子发射光谱仪(ICP-AES)测定太阳能级硅(SOG-Si)中的方法.试验发现,在110℃左右的温度下,用氢氟酸和硝酸的混合溶液作溶剂,试样在PFA烧杯中能较快溶解,且在溶样时添加0.3 mL甘露醇,可有效抑制的损失.在1000级洁净室中,用金属氧化物半导体(MOS)级试剂溶解电子级硅(EG-Si),可控制样品空白中元素含量小于1 μg/L,并能抑制部分基体效应.在仪器最佳工作状态下,选取B 182.641 nm作为分析谱线,方法的检出限为18.10 μg/L,回收率在92%~108%之间,相对标准偏差(RSD,n=11)不大于7.2%.样品中的测定结果与电感耦合等离子体质谱(ICP-MS)法及辉光放电质谱(GDMS)法进行了比对,结果吻合.","authors":[{"authorName":"孙东亚","id":"c25e43a8-80ac-4225-9a18-e7191c0930ca","originalAuthorName":"孙东亚"},{"authorName":"何丽雯","id":"1f7e6bcd-a937-41b6-8288-45268782baa6","originalAuthorName":"何丽雯"}],"doi":"10.13228/j.issn.1000-7571.2014.10.008","fpage":"42","id":"7fe27e74-d947-45f8-bd8d-25c11bbce4bc","issue":"10","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"d586fb7e-03a8-4239-acc1-fadb7911e13e","keyword":"电感耦合等离子体原子发射光谱法","originalKeyword":"电感耦合等离子体原子发射光谱法"},{"id":"958118c2-b3d3-485c-b33f-fca6e42a5f03","keyword":"太阳能级硅","originalKeyword":"太阳能级硅"},{"id":"28cc177a-a8c3-447f-a9a0-be776a5948ef","keyword":"洁净室","originalKeyword":"洁净室"},{"id":"20fa71f2-3222-4059-9cf9-ad7076bfda46","keyword":"","originalKeyword":"硼"}],"language":"zh","publisherId":"yjfx201410008","title":"电感耦合等离子体原子发射光谱法测定太阳能级硅中","volume":"34","year":"2014"},{"abstractinfo":"Na2O-CaO-SiO2-P2O5-B2O3硅酸盐生物玻璃是一类具有良好生物活性和降解性能的组织工程材料. 本研究中, 采用有机泡沫浸渍法, 乙醇作溶剂, 乙基纤维素作添加剂, 将硅酸盐玻璃粉体制备成具有三维连通网状结构的组织工程多孔支架. 通过调节浆料的固相含量和乙基纤维素含量, 改善坯体的涂覆量, 在支架孔径为300~500μm,孔隙率高于80%时, 使支架抗压强度从0.03MPa提高到0.36MPa. 根据蜂窝状结构模型分析, 发现采用高强度玻璃, 优化浆料是改善多孔材料结构和力学性能的有效途径. 用该模型理论指导, 由Na2O-K2O-MgO-CaO-SiO2-P2O5-B2O3系统制成的另一种硅酸盐玻璃支架, 其抗压强度可达5~8MPa. 实验表明有机泡沫浸渍法在制备组织工程支架中有广泛的应用前景.
","authors":[{"authorName":"刘欣","id":"c0f53fa1-b096-432d-b067-a2b3edf8f68c","originalAuthorName":"刘欣"},{"authorName":"姚爱华","id":"c041d714-18f4-4cda-afe7-b9ce534623a5","originalAuthorName":"姚爱华"},{"authorName":"王德平","id":"78431c96-db9d-4c5b-9566-24acd9d57f2c","originalAuthorName":"王德平"},{"authorName":"黄文hai","id":"b49eeade-3b8b-4e36-b965-ce2c635418f2","originalAuthorName":"黄文hai"},{"authorName":"付海罗","id":"5a2f34a1-50b0-46fb-ab5b-eaffe74619c1","originalAuthorName":"付海罗"},{"authorName":"赵荻","id":"4c6454f5-e4a3-4505-882d-47bbd1d94c26","originalAuthorName":"赵荻"},{"authorName":"吕维加","id":"bbd6ad38-8ca1-41a9-8b97-1698fad6fbf5","originalAuthorName":"吕维加"},{"authorName":"潘浩波","id":"b32b6898-e4d5-4cd9-bdd3-befcb882cbb1","originalAuthorName":"潘浩波"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00322","fpage":"322","id":"bf544114-c423-4cc9-943d-cfc46de200c3","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"2b940528-46fe-4e47-8c7a-b2947ee0432c","keyword":"有机泡沫浸渍法","originalKeyword":"有机泡沫浸渍法"},{"id":"e86cd3a2-7f9e-48a1-a227-690fb41abd77","keyword":" borosilicate bioglass","originalKeyword":" borosilicate bioglass"},{"id":"08a26d47-e408-4e99-bfff-20f8294c0cb8","keyword":" scaffolds","originalKeyword":" scaffolds"},{"id":"3cb1396d-341f-429d-a44e-3106c7eb37a4","keyword":" slurry
","originalKeyword":" slurry
"}],"language":"zh","publisherId":"1000-324X_2008_2_24","title":"硅酸盐生物活性玻璃多孔支架的制备","volume":"23","year":"2008"},{"abstractinfo":"Na2O-CaO-SiO2-P2O5-B2O3系硅酸盐生物玻璃是一类具有良好生物活性和降解性能的组织工程材料.本研究中,采用有机泡沫浸渍法,乙醇作溶剂,乙基纤维素作添加剂,将硅酸盐玻璃粉体制备成具有三维连通网状结构的组织工程多孔支架.通过调节浆料的固相含量和乙基纤维素含量,改善坯体的涂覆量,在支架孔径为300~500um,孔隙率高于80%时,使支架抗压强度从0.03MPa提高到0.36MPa.根据蜂窝状结构模型分析,发现采用高强度玻璃,优化浆料是改善多孔材料结构和力学性能的有效途径.用该模型理论指导,由Na2O-CaO-SiO2-P2O5-B2O3系统制成的另一种硅酸盐玻璃支架,其抗压强度可达5~8MPa.实验表明有机泡沫浸渍法在制备组织工程支架中有广泛的应用前景.","authors":[{"authorName":"刘欣","id":"53b29ccf-ef95-4e53-a85f-9b11d4d401e0","originalAuthorName":"刘欣"},{"authorName":"姚爱华","id":"ae832096-d5f9-4c3c-bcd8-c735af7e5eba","originalAuthorName":"姚爱华"},{"authorName":"王德平","id":"ef54dc43-3a10-4201-bdc2-907bfcc1928c","originalAuthorName":"王德平"},{"authorName":"黄文旵","id":"0b109dd7-9513-42d9-ad79-dcf3a47154a9","originalAuthorName":"黄文旵"},{"authorName":"付海罗","id":"6bb160da-f058-4617-b186-868d65bf189a","originalAuthorName":"付海罗"},{"authorName":"赵荻","id":"735f6942-9f8a-462a-902e-ce7099205354","originalAuthorName":"赵荻"},{"authorName":"吕维加","id":"b3a938bb-05bf-4e54-9996-924d1f70b969","originalAuthorName":"吕维加"},{"authorName":"潘浩波","id":"ed59f631-a046-4000-bed3-f3d1d58f4c81","originalAuthorName":"潘浩波"}],"doi":"10.3321/j.issn:1000-324X.2008.02.024","fpage":"322","id":"ca08812a-8fdf-4592-bbc6-610fce9cf130","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d022f7bd-8ffe-4caa-9b8e-9483c5427bcb","keyword":"有机泡沫浸渍法","originalKeyword":"有机泡沫浸渍法"},{"id":"e72f9586-233c-4973-baf2-6b7ab358b9f3","keyword":"硅酸盐生物活性玻璃","originalKeyword":"硼硅酸盐生物活性玻璃"},{"id":"402281d0-e4d1-4799-8781-e0a14c06a82a","keyword":"多孔支架","originalKeyword":"多孔支架"},{"id":"b341c81a-022c-4e97-bf5e-d388e24ffd39","keyword":"浆料","originalKeyword":"浆料"}],"language":"zh","publisherId":"wjclxb200802024","title":"硅酸盐生物活性玻璃多孔支架的制备","volume":"23","year":"2008"}],"totalpage":2394,"totalrecord":23939}