{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用金相显微镜、扫描电镜、X射线衍射仪等实验手段,研究质量分数为0%~0.3%的钇对7055铝合金铸态组织的影响.研究表明:Y含量在小于0.25%范围内时,随含量增加细化效果增加;当Y含量为0.25%时,铸态组织中基体晶粒细化效果显著,晶粒减小到40μm左右,第二相球化并细化;当Y含量超过0.25%时,合金的铸态组织随着其含量的增加又逐渐粗化,Y加入7055铝合金中主要形成Al6Cu6Y与Al3Y,并且弥散分布在晶界上.","authors":[{"authorName":"韩剑","id":"a9fccb34-2fd1-4bfe-a313-2a2ae3885642","originalAuthorName":"韩剑"},{"authorName":"戴起勋","id":"c0b4cea9-0c82-4d9d-8a6e-ab6f7ba36793","originalAuthorName":"戴起勋"},{"authorName":"李桂荣","id":"5cdeb997-ea42-40fb-8892-410bdb66cd66","originalAuthorName":"李桂荣"},{"authorName":"陈登斌","id":"3adc125b-3370-47ed-a1c3-31e46976d439","originalAuthorName":"陈登斌"},{"authorName":"","id":"09e4ebdb-903d-4634-8369-8c5bf65efb5a","originalAuthorName":"赵玉涛"},{"authorName":"刘瑜","id":"94377943-99e1-496f-9055-8e12819a85c2","originalAuthorName":"刘瑜"},{"authorName":"陈刚","id":"464e9a2a-89c3-4015-8dec-05cc0d498028","originalAuthorName":"陈刚"},{"authorName":"程晓农","id":"20b8f09d-e858-44ff-8f4f-cf3e484a57f2","originalAuthorName":"程晓农"}],"doi":"10.3969/j.issn.1001-4381.2009.04.016","fpage":"67","id":"74d34240-b981-4033-8d0a-d1aafdfa0ec4","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"031fed24-a169-4d7e-b89b-9361daf6564f","keyword":"稀土Y","originalKeyword":"稀土Y"},{"id":"9969b238-6d63-43cd-8989-fef5d8346b53","keyword":"7055铝合金","originalKeyword":"7055铝合金"},{"id":"0bbfcb62-4f26-496d-9caa-03bb8cad9016","keyword":"铸态组织","originalKeyword":"铸态组织"}],"language":"zh","publisherId":"clgc200904016","title":"稀土钇对7055铝合金铸态组织的影响","volume":"","year":"2009"},{"abstractinfo":"以Al-Y中间合金的形式,向7055铝合金基体中添加稀土元素钇,主要讨论了钇在7055铝合金熔炼过程中的热力学机制以及在凝固过程中的作用机制.结果表明:钇与熔体中氧、氢、氮、硫、铁等杂质元素有较强的结合作用,起到了熔体净化效果.加入钇后,基体晶粒的尺寸从60-70 μm下降到40-50 μm.原因是钇在铝中固溶度小,偏聚在固液边界层,阻碍了Zn、Mg、Cu等溶质原子的扩散,造成凝固前沿的成分过冷,促进了胞状枝晶生长.界面处共晶体数量增加,且尺寸较不加钇时减小.","authors":[{"authorName":"李桂荣","id":"6527089c-b1c9-4220-86e5-120898d106f5","originalAuthorName":"李桂荣"},{"authorName":"王宏明","id":"8f7300a3-fd10-40be-9ab7-93356848f0ec","originalAuthorName":"王宏明"},{"authorName":"","id":"2d00b817-5eea-41ec-84e6-ef307118aa30","originalAuthorName":"赵玉涛"},{"authorName":"陈刚","id":"9b28f32c-7d27-4cdc-b4f0-6516f32e68bd","originalAuthorName":"陈刚"},{"authorName":"陈登斌","id":"fab82b96-c048-4a6e-afdb-31fbb9ef7c78","originalAuthorName":"陈登斌"},{"authorName":"韩剑","id":"1397382b-5c32-4185-b082-8aaeaf1e9e06","originalAuthorName":"韩剑"},{"authorName":"戴起勋","id":"435aa054-d7b4-4c0c-89c1-e3b322bedfae","originalAuthorName":"戴起勋"}],"doi":"","fpage":"80","id":"11a8117c-c3fd-4075-9fdd-3eac27c0718f","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"067cc91b-31e5-4b96-bdff-713d1974c7bf","keyword":"7055铝合金","originalKeyword":"7055铝合金"},{"id":"39a06643-6a9f-458f-b85d-258e4e2dd483","keyword":"稀土钇","originalKeyword":"稀土钇"},{"id":"321dd98e-baad-4e9c-9663-22446641c420","keyword":"热力学机制","originalKeyword":"热力学机制"},{"id":"b78d64a1-9b9f-465d-8e3e-6464aec7d90e","keyword":"成分过冷","originalKeyword":"成分过冷"}],"language":"zh","publisherId":"xyjsclygc201001018","title":"稀土钇对7055铝合金熔炼和凝固过程的作用机制","volume":"39","year":"2010"},{"abstractinfo":"以K2TiF6、K2ZrF6与Na3AlF6为反应物,在高频磁场下,采用熔体反应法原位合成了A13(Ti(0.5)Zr(0.5))p/6005A复合材料;通过扫描电镜、X射线衍射仪、拉伸试验机等对复合材料的组织与性能进行了研究.结果表明:磁场下原位生成了细小的Al3(Ti(0.5)Zr(0.5))颗粒,平均尺寸为1-3μm,且弥散分布于基体中;在磁场频率为2MHz时复合材料的屈服强度、抗拉强度分别为279.4,305.8MPa,较基体的提高了7.1%和8.7%,伸长率为9.5%,较基体的下降了10.1%;复合材料的断裂特征由基体的韧性断裂转变为混合型断裂.","authors":[{"authorName":"祝晓辉","id":"e5ecc880-2b8e-429b-8ebc-2447de32b25c","originalAuthorName":"祝晓辉"},{"authorName":"","id":"99c597b0-28ef-49e4-8445-94f3d0de6436","originalAuthorName":"赵玉涛"},{"authorName":"李桂荣","id":"3dc07147-126b-46e2-8c1f-3bd7cbb4c665","originalAuthorName":"李桂荣"},{"authorName":"陈刚","id":"1317303f-aef9-4b06-88a4-6037151e081e","originalAuthorName":"陈刚"},{"authorName":"佘昌俊","id":"a990450f-9b6e-44aa-b3cb-a3296fd4368e","originalAuthorName":"佘昌俊"},{"authorName":"轩动华","id":"bd60e501-528b-4f33-8404-6745b556bd2c","originalAuthorName":"轩动华"},{"authorName":"郑梦","id":"368fee1e-8bc3-40b2-94d3-7cf60e74c0de","originalAuthorName":"郑梦"}],"doi":"","fpage":"71","id":"1a8d15bd-23be-40bd-b6b1-e41bc9d0f8ed","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f1e0be50-ca35-4170-b1dd-4f8f1d3b117e","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"47143e29-7449-45fa-9258-f6fb0bcd2299","keyword":"高频磁场","originalKeyword":"高频磁场"},{"id":"acca4e66-ac25-43b3-9a76-ac1d1c452a8a","keyword":"原位反应","originalKeyword":"原位反应"}],"language":"zh","publisherId":"jxgccl201103020","title":"高频磁场下原位合成Al3(Ti0.5Zr0.5)p/6005A复合材料的显微组织与性能","volume":"","year":"2011"},{"abstractinfo":"采用熔体直接反应法成功制备了Mg2Sip/Al复合材料,研究了Mg2Si颗粒含量及530℃固溶6h+173℃时效5h热处理对复合材料组织和性能的影响,利用X射线衍射仪、扫描电镜等分析了复合材料的物相和显微组织,并测试了其力学性能。结果表明,随着Mg2Si颗粒含量的增加,在一定范围内,铸态复合材料基体的晶粒尺寸随之变小;热处理后Mg2Si颗粒名义含量4%(质量分数)的复合材料析出的二次相颗粒较名义含量5%(质量分数)的复合材料更多,二次相颗粒平均尺寸均约为4μm,且颗粒名义含量4%(质量分数)的复合材料热处理后抗拉强度和伸长率分别达到280MPa和9%,较热处理前分别提高了24.44%和63.64%","authors":[{"authorName":"余莹","id":"3b47ba0c-1dca-4da5-892b-1ae3d33c8198","originalAuthorName":"余莹"},{"authorName":"陈刚","id":"60d259a0-dec1-43d2-8b86-b4960c76493a","originalAuthorName":"陈刚"},{"authorName":"","id":"9e4e9cd7-c06a-4d75-b4f1-ccf78d851367","originalAuthorName":"赵玉涛"},{"authorName":"刘雪亮","id":"3b9502e4-ae2b-444e-8963-d5189092d522","originalAuthorName":"刘雪亮"},{"authorName":"崔骏","id":"d1512337-951b-4d77-a6a7-4b1c61b03836","originalAuthorName":"崔骏"},{"authorName":"侯文胜","id":"704d561c-44dd-4530-9f54-c836d387977e","originalAuthorName":"侯文胜"},{"authorName":"杨","id":"4c1a7e50-6444-4a31-a5da-171776e1e6fd","originalAuthorName":"杨涛"}],"doi":"","fpage":"3291","id":"e7cb5b3c-752c-4461-ad39-a99299533bc9","issue":"23","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3469dd45-4b65-4cee-958e-6d6d99fc66ee","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"99487e89-0a01-424d-99c9-3b89c377d266","keyword":"Mg2Si颗粒","originalKeyword":"Mg2Si颗粒"},{"id":"8f6e64a0-4f18-42cc-93d9-193bf99d61b6","keyword":"名义含量","originalKeyword":"名义含量"},{"id":"76efa00a-8fd1-4647-8b44-804aea198c71","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b1c258ef-91d1-4937-9776-e28b61ecbc6e","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"gncl201223026","title":"原位合成Mg2Sip/Al复合材料的组织及性能研究","volume":"43","year":"2012"},{"abstractinfo":"通过Al-Ni2O3体系熔体反应法制备Al3Ni颗粒增强A356基复合材料,并研究了材料显微组织和耐磨性能.结果表明,Al3Ni颗粒在5%(质量分数)Al3Ni/A356复合材料中的形貌为细小的点状,在10%(质量分数)Al3Ni/A356复合材料中呈不规则的块状和弯曲的条状,在20%(质量分数)Al3Ni/A356复合材料中的形貌为圆球形,其中,5%(质量分数)Al3Ni/A356复合材料中,Al3Ni颗粒的尺寸最小.Al3Ni/A356复合材料的磨损率随着增强体质量分数的减少而降低,且所有复合材料的磨损率均低于A356合金.复合材料的磨损机制为磨粒磨损和剥层廖损.","authors":[{"authorName":"杨","id":"ef4a875d-bec8-49b3-b09e-90d6a3dd0a95","originalAuthorName":"杨涛"},{"authorName":"陈刚","id":"6249bf0e-3e01-41f0-99ed-a6780dfc9da3","originalAuthorName":"陈刚"},{"authorName":"史经浩","id":"0ce978eb-7812-4ea2-bece-d5ad92b80f6d","originalAuthorName":"史经浩"},{"authorName":"","id":"911c7c51-90af-4eb8-ae9b-7f38f8b31147","originalAuthorName":"赵玉涛"},{"authorName":"邵静波","id":"c9c5923c-1059-4f72-8702-50b67e178dc7","originalAuthorName":"邵静波"},{"authorName":"肖洁","id":"bbee8bc5-b712-4bb7-bee7-cff23a9e2ddb","originalAuthorName":"肖洁"},{"authorName":"花程","id":"37804a53-f939-418b-b779-6bbfaaa681a5","originalAuthorName":"花程"}],"doi":"10.3969/j.issn.1001-9731.2016.01.027","fpage":"1131","id":"973bd954-507e-4946-86eb-6524661478f3","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6ec1c014-f232-4439-ba8f-1f5ecaee7eb2","keyword":"Al3Ni","originalKeyword":"Al3Ni"},{"id":"6c4ef1a1-63fb-46a2-8ae4-9a8814ff6dcf","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"6c0ad69f-519b-4a8c-8d96-3f450c150238","keyword":"耐磨性能","originalKeyword":"耐磨性能"},{"id":"f1062e73-e0bb-46f9-8856-ae065f7657b7","keyword":"A356","originalKeyword":"A356"},{"id":"2499a39f-82a5-40c8-aa5a-57aadc84cd8c","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"gncl201601027","title":"原位Al3Ni颗粒增强A356基复合材料的显微组织与耐磨性能研究","volume":"47","year":"2016"},{"abstractinfo":"泰山指产于山东省泰山西麓区域的蛇纹石质,常呈深色外观.将从泰山产出与泰山文化结合,直接命名为“泰山”,可最大限度地开发应用.关键要找出其区别于辽宁岫以及其它产地蛇纹石质的主要鉴定特征,确定其产地.分别测试了辽宁岫岩、甘肃酒泉及新疆等几个与泰山相似的玉石,得出泰山产地特征的关键检测项目为:(1)颜色:以暗色调的绿色为主.(2)放大检查:常伴有金星状反光包体、白色柱状包体,有黑色矿物包体.(3)X荧光光谱分析:金属元素主要为Fe、Ni、Cr、Mn等元素,其含量明显高于岫产品,并且Ni/Cr=2~4,其它产地的产品的比值接近于1.开展泰山检测实验室须配备参考样品.","authors":[{"authorName":"程佑法","id":"7fe2b7ce-2b18-42c7-b9a0-e1b3e22a85f6","originalAuthorName":"程佑法"},{"authorName":"李建军","id":"1d146e17-7f9f-41f1-96f1-0e556bc940aa","originalAuthorName":"李建军"},{"authorName":"祝培明","id":"5d9e42e0-ccc7-48df-a120-de66adbb405a","originalAuthorName":"祝培明"},{"authorName":"范春丽","id":"65757d69-6c74-45d1-8201-176ab5e8ced8","originalAuthorName":"范春丽"},{"authorName":"山广祺","id":"12616c20-0d88-4c26-af0a-404f0f3757c1","originalAuthorName":"山广祺"}],"doi":"","fpage":"2324","id":"b8704fdb-0b28-44b3-b34f-056f6b133153","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7ea299df-11d4-4030-9126-00b225b1c06b","keyword":"泰山","originalKeyword":"泰山玉"},{"id":"1e7c0cb1-a373-4405-bf0d-82b5313f2e56","keyword":"蛇纹石","originalKeyword":"蛇纹石玉"},{"id":"ca53440a-5050-44a3-92f3-9bdc5f29225f","keyword":"产地特征","originalKeyword":"产地特征"},{"id":"e4501985-f633-4ad2-b6a5-6cda1d8ac956","keyword":"命名","originalKeyword":"命名"}],"language":"zh","publisherId":"rgjtxb98201409026","title":"泰山的产地特征及命名","volume":"43","year":"2014"},{"abstractinfo":"在Gleeble-3500热模拟实验机上对Delta工艺Inconel 718合金进行高温压缩实验,研究其高温压缩变形的流变应力行为.结果表明:δ相时效态Inconel 718合金在本实验条件下具有正的应变速率敏感性,流变应力随着应变速率的降低和变形温度的升高而减小,动态再结晶是合金重要的软化机制.δ相时效态Inconel 718合金的热变形激活能为497.407kJ/mol,高温压缩峰值流变应力与变形温度和应变速率的关系可用双曲正弦函数表示.","authors":[{"authorName":"杨平","id":"f24a05da-bb9a-4b0f-806c-4969d1c3d109","originalAuthorName":"杨平"},{"authorName":"","id":"1012c919-de56-4062-ae37-c49c863e0e14","originalAuthorName":"赵玉涛"},{"authorName":"王安东","id":"f34b551e-3fe2-4bca-a37d-d235dc635483","originalAuthorName":"王安东"},{"authorName":"缪栋","id":"5b191132-64bf-49b6-809a-5fbe226aec45","originalAuthorName":"缪栋"},{"authorName":"陈刚","id":"b0565805-8298-41ac-91ff-239201eeda62","originalAuthorName":"陈刚"},{"authorName":"何毅","id":"08555fe6-5d26-4ab7-aa43-b9bfbdecd8cc","originalAuthorName":"何毅"}],"doi":"","fpage":"72","id":"00f3b019-a9d3-4c01-bf4e-0c1f3105ccc8","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5714fb08-431c-408b-94f5-4494de65429b","keyword":"Inconel 718合金","originalKeyword":"Inconel 718合金"},{"id":"564b6fdd-3310-4a58-b943-8f6a8434ff06","keyword":"Delta工艺","originalKeyword":"Delta工艺"},{"id":"e97296f4-c543-4b41-a96f-4181e179ad2f","keyword":"高温压缩","originalKeyword":"高温压缩"},{"id":"b39355b3-adc3-43ae-897b-e1ad89cde909","keyword":"流变应力","originalKeyword":"流变应力"},{"id":"f20cf24b-4da1-48bd-8948-d4947246b52b","keyword":"热变形激活能","originalKeyword":"热变形激活能"}],"language":"zh","publisherId":"zgysjsxb201201010","title":"Delta工艺Inconel718合金热变形条件下的流变行为","volume":"22","year":"2012"},{"abstractinfo":"从Al-ZrOCl2体系利用熔体直接反应法制备了原位ZrAl3和Al 2O3颗粒增强铝基复合材料。 Al-Zr-O体系中原位形成的ZrAl3具有四方结构, 其 最大 尺寸为4  μm, 纵横长度比小于2.0。 此外, 还有一定数量的亚微米级Al2O3 颗粒生成 , 其晶体为六方结构, 纵横长度比大于2.0。 ZrAl3(p), Al2O3(p)/Al复 合材 料凝固组织中, 随ZrOCl2加入量的增加, 生成的颗粒尺寸更小, 分布更均匀。 拉 伸试验 表明: Al-ZrOCl2体系制备的复合材料具有高的强度和塑性, 断口组织中存在大量韧窝 , 韧窝中镶嵌着细小颗粒, 属韧性断裂。","authors":[{"authorName":"","id":"3a59abb2-a0b6-4a98-ba4d-61d4090e96b4","originalAuthorName":"赵玉涛"},{"authorName":"孙国雄","id":"dc46c278-dcf6-4b78-a177-2758cd037f4d","originalAuthorName":"孙国雄"}],"doi":"","fpage":"41","id":"08549362-7727-4fcb-bc1a-28156b1b7699","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"ac175333-40ea-4701-a4d0-ac5957b779eb","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"9f643d10-b1ff-4575-ae2f-e412a749e99a","keyword":"ZrOCl2","originalKeyword":"ZrOCl2"},{"id":"7882c6be-899d-4ff1-82c4-f2838751a3ce","keyword":"ZrAl3","originalKeyword":"ZrAl3"},{"id":"30ef1c06-62cd-434c-96d8-793c1b725a33","keyword":"Al2O3","originalKeyword":"Al2O3"}],"language":"zh","publisherId":"zgysjsxb200101010","title":"Al-ZrOCl2反应体系制备ZrAl3(p)+Al2O3(p)/Al复合材料","volume":"11","year":"2001"},{"abstractinfo":"开发了Al-K2ZrF6体系熔体反应法合成原位铝基复合材料,采用XRD,SEM和TEM分析了复合材料中相组成、微观组织和界面结构.实验结果表明:合成的增强相为Al3Zr颗粒,常规金属型铸造的复合材料中其尺寸在3 μm~4 μm左右,一般成聚集态分布,颗粒形貌基本为长方体状;该复合材料经重熔快淬成形后,颗粒尺寸减小,基本为粒状,并弥散分布于基体上.Al3Zr/Al复合材料的界面结构研究表明,Al3Zr颗粒与Al存在一定的晶体学位向关系:[-2-21]Al3Zr//[100]Al,(012)Al3Zr//(1-10)Al,其点阵错位度仅为10.87%,这表明Al3Zr颗粒可作为基体Al相的形核衬底.Al3Zr/Al复合材料的力学性能测试显示,当Al3Zr颗粒体积分数为11.2%时,抗拉强度和屈服强度分别为148.7 Mpa和110.2 Mpa,而且Al3Zr/Al复合材料的抗拉强度和屈服强度均随颗粒体积分数增加显著提高.","authors":[{"authorName":"汪小燕","id":"b66e1bca-dc53-45ff-a504-1bb998d5c735","originalAuthorName":"汪小燕"},{"authorName":"","id":"47fb2825-b7a2-4d2e-9088-bcc891894189","originalAuthorName":"赵玉涛"},{"authorName":"陈刚","id":"bafdabc9-71f1-40f2-a5fb-66b3248e3871","originalAuthorName":"陈刚"},{"authorName":"程晓农","id":"b5d6735a-b085-4fdf-9c08-a23d21b074e4","originalAuthorName":"程晓农"},{"authorName":"张红杰","id":"53459224-e192-4375-b7cd-59eb885b3fbf","originalAuthorName":"张红杰"},{"authorName":"章照","id":"e76d19b7-0581-46d1-8b80-cd4a34818081","originalAuthorName":"章照"}],"doi":"","fpage":"259","id":"0bc72105-0f35-4ad3-9f96-5c010a10a6a8","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"75b50fef-7460-4128-8ed7-de672cddf31b","keyword":"Al-K2ZrF6体系","originalKeyword":"Al-K2ZrF6体系"},{"id":"f9179dc0-ba15-403f-b05e-11776c1af2bc","keyword":"熔体反应法","originalKeyword":"熔体反应法"},{"id":"ba548ad7-f1a6-4eb5-a45c-b563ec8e79e3","keyword":"原位复合材料","originalKeyword":"原位复合材料"},{"id":"dc5cfb5a-5f4d-4d98-861e-6eb95fd74d4f","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"27c2b00e-6846-4d14-99f5-21891bc360a3","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc200702016","title":"Al-K2ZrF6体系熔体反应法合成复合材料的微观组织和力学性能","volume":"36","year":"2007"},{"abstractinfo":"采用K2TiF6和KBF4混合盐原位反应法制备TiB2/7055复合材料,研究了稀土对复合材料铸态组织和力学性能的影响。结果表明:添加0.3%稀土可以显著细化复合材料的铸态组织,晶粒尺寸从200μm减小到40μm左右。同时,TiB2颗粒得到细化,其平均尺寸约为100 nm;TiB2颗粒在基体上的分布也更加均匀。经过480℃固溶60 min、120℃时效24 h后复合材料抗拉强度达到690 MPa,伸长率达到5.5%。","authors":[{"authorName":"王国路","id":"f76fefec-de31-4279-8188-702521e0fb74","originalAuthorName":"王国路"},{"authorName":"陈刚","id":"10299f88-e317-4f3a-854a-aced86588c68","originalAuthorName":"陈刚"},{"authorName":"","id":"f7c728f3-72f4-4f1e-a6a7-27d0cc09ada8","originalAuthorName":"赵玉涛"},{"authorName":"吴志锋","id":"6010b6aa-7cdb-4524-a064-4cd57763a224","originalAuthorName":"吴志锋"}],"doi":"","fpage":"1","id":"104eb8eb-1939-431d-b689-77554a2aff7a","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"87b895f3-ef4e-4ce9-90e9-5aafa4590127","keyword":"TiB2/7055基复合材料","originalKeyword":"TiB2/7055基复合材料"},{"id":"ac006d4a-8ef8-4518-82ef-f1d89aa10640","keyword":"稀土","originalKeyword":"稀土"},{"id":"501cfe4d-2f89-4c7e-9886-f3de5b3677c8","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"5665f243-a8b4-417a-aa33-ce3ac3972249","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201107001","title":"稀土对TiB_2/7055复合材料组织及性能的影响","volume":"32","year":"2011"}],"totalpage":14,"totalrecord":134}