{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用真空热压法制备了体积分数为30%的SiCp/2024Al复合材料,研究了该复合材料的显微组织结构及力学性能.结果表明,复合材料组织致密,颗粒与基体界面结合状况较好,SiC颗粒在铝基体中基本上分布均匀.经490℃、2h固溶处理和170℃、8h人工时效后,SiCp/2024Al复合材料的抗拉强度、屈服强度和伸长率分别为409 MPa、325 MPa和4.9%,基体中存在大量的纳米析出相为S'(Al2CuMg).随SiC颗粒加入,复合材料力学性能提高,其断裂方式为基体开裂和界面处撕裂.","authors":[{"authorName":"谢敬佩","id":"6ba81641-a8f8-487c-972d-27c9c0e68fb6","originalAuthorName":"谢敬佩"},{"authorName":"王行","id":"04147e98-75a5-4872-9bdd-1e7dbf5671b8","originalAuthorName":"王行"},{"authorName":"王爱琴","id":"2dfb16b7-9df8-4ae0-ad1c-aa53951eccb2","originalAuthorName":"王爱琴"},{"authorName":"郝世明","id":"052b5e0c-f7ba-47de-8e1c-ebccd0c2eadc","originalAuthorName":"郝世明"},{"authorName":"刘舒","id":"361196d4-f584-48c8-b285-0314d02fc703","originalAuthorName":"刘舒"}],"doi":"","fpage":"22","id":"211cd93c-454b-4669-98d0-037c0ff17991","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"56f63d93-e747-4438-9415-7ad2252c3bfe","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"e39a9687-07f5-4036-9a33-1bb3184cc9df","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"4bbeb01c-9c35-41cd-b48c-8fc04b6b592c","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"bd82f0de-409f-41e8-86ae-a2e1341c839b","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"c1ea1251-edb5-485a-9a1f-f9e5175d06da","keyword":"断裂机理","originalKeyword":"断裂机理"}],"language":"zh","publisherId":"jsrclxb201501005","title":"真空热压SiCp/2024Al复合材料力学性能与显微结构","volume":"36","year":"2015"},{"abstractinfo":"采用真空热压原位合成法制备Al3Ti增强Mg-Al基复合材料。研究了烧结工艺对复合材料显微结构的影响。探讨了Al3Ti的原位合成机制,提出了Ti和Al的微观反应模型。采用XRD、SEM等方法分析了复合材料的相组成及微观结构。结果表明,Mg-Al基复合材料组织致密,原位合成增强相Al3Ti颗粒在基体中均匀分布,尺寸为0.5~2.0μm,与基体界面紧密结合,同时存在少量残余的Ti和中间相Al-Ti。","authors":[{"authorName":"黎慧开","id":"0d13a891-8ea5-49c7-b533-c9b68c1116df","originalAuthorName":"黎慧开"},{"authorName":"刘越","id":"d5ade21c-6208-494c-9763-dc584c483388","originalAuthorName":"刘越"},{"authorName":"王保勇","id":"6f48c497-9e99-44fb-91c8-b3835ffb61e6","originalAuthorName":"王保勇"},{"authorName":"张雅静","id":"76dbf065-6458-4fce-902a-869f11409e83","originalAuthorName":"张雅静"}],"doi":"","fpage":"132","id":"e502b975-55ef-42fb-8b6a-a6d84efcdc6c","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"78a986be-3e11-43d9-ac37-bfbe29aaee9f","keyword":"Mg-Al基复合材料","originalKeyword":"Mg-Al基复合材料"},{"id":"bc311b9e-efec-4249-af92-d0fe7b1c33f9","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"cee29f36-6766-4c12-a4ca-942bf11aa0ba","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"d2ea733c-1993-460d-9fd8-c033756170be","keyword":"Al3Ti颗粒","originalKeyword":"Al3Ti颗粒"},{"id":"94656026-aa3c-48eb-a45c-54f83fd5b2ab","keyword":"机制","originalKeyword":"机制"}],"language":"zh","publisherId":"fhclxb201204022","title":"真空热压原位Al_3Ti增强Mg-Al基复合材料合成机制","volume":"29","year":"2012"},{"abstractinfo":"采用机械合金化(MA)活化CuCr50粉末,然后对MA粉进行真空热压制备出CuCr50触头材料.结果表明,CuCr50 MA粉为亚稳态过饱和固溶体,这种过饱和固溶体在随后的热压过程中发生脱溶现象.随脱溶程度的不同,CuCr50块体材料的组织与性能也发生相应的变化.由于MA活化作用,使得CuCr50 MA粉在较低的温度保压较短的时间内便获得了致密度高的块体材料,并且第二相Cr分布均匀,尺寸细小,其综合性能优于其它工艺方法获得的CuCr50触头材料.","authors":[{"authorName":"鲁世强","id":"f9a22c91-f450-4425-a71d-6c2082614485","originalAuthorName":"鲁世强"},{"authorName":"胡春文","id":"6f9c0207-20a1-4127-becc-5f9a4fe51d2d","originalAuthorName":"胡春文"},{"authorName":"李鑫","id":"4fef47cb-0c76-4aac-9134-baee5fc6c600","originalAuthorName":"李鑫"},{"authorName":"王克鲁","id":"8327570d-b0fe-4847-9d88-d8516ec216c3","originalAuthorName":"王克鲁"},{"authorName":"董显娟","id":"74a7e578-f715-480b-8c20-ccfe525e7372","originalAuthorName":"董显娟"},{"authorName":"贺跃辉","id":"a8e95789-e9c9-4ec4-a4c2-9e9b45e496d3","originalAuthorName":"贺跃辉"}],"doi":"","fpage":"1041","id":"5de25c99-f7a4-4819-9e31-68a8323fcde8","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0c745b63-4b97-42b3-bfab-8c36b920bc49","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"01f64735-eb71-458e-ac2e-ef540ed5e886","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"24e53b37-cd08-4f6a-afff-661cfe8cf7b9","keyword":"触头材料","originalKeyword":"触头材料"},{"id":"58840872-b436-4c3f-9509-b0f30edd4d33","keyword":"组织与性能","originalKeyword":"组织与性能"}],"language":"zh","publisherId":"xyjsclygc200706024","title":"机械活化热压制备CuCr50触头材料的组织与性能","volume":"36","year":"2007"},{"abstractinfo":"采用真空单轴热压( HUP)方法制备了 Bi2Te3基热电材料.结果表明, HUP试样的密度在原始区熔材料的 97%以上.所有 HUP试样的剪切强度都在 21MPa以上,与区熔 Bi2Te3基材料 (001)解理面的强度相比,提高 4倍左右.电学性能测试发现, HUP试样的电学性能低于区熔试样,其原因被认为主要是由于在材料粉碎和热压过程中,有效载流子浓度发生了变化.实验发现,相对于区熔试样, p型 HUP试样的最佳工作温度向低温方向偏移,而 n型 HUP试样的最佳工作温度向高温方向移动. ","authors":[{"authorName":"卢波辉","id":"28007449-97dd-40a5-a40e-3f2f55589030","originalAuthorName":"卢波辉"},{"authorName":"赵新兵","id":"c51eecef-da14-434d-ad39-14ceded2b846","originalAuthorName":"赵新兵"},{"authorName":"倪华良","id":"749b440b-6473-4c36-bab3-841fd017a315","originalAuthorName":"倪华良"},{"authorName":"吉晓华","id":"1d399a3b-dc09-4587-a303-2858af22fcdb","originalAuthorName":"吉晓华"}],"doi":"10.3969/j.issn.1004-244X.2004.03.004","fpage":"13","id":"6a76492d-927d-445a-a142-a6fa8e48abdc","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f2020d92-48dd-49cb-837a-1f8ec7e9748f","keyword":"半导体材料","originalKeyword":"半导体材料"},{"id":"88129ad2-d99b-4d1d-873a-d27948a68bb4","keyword":"热电材料","originalKeyword":"热电材料"},{"id":"69d8a2bc-c861-4e92-befb-4cbed4c897f9","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"abb822c2-f030-46d1-92b1-66ee904d4f3a","keyword":"Bi2Te3","originalKeyword":"Bi2Te3"},{"id":"e2939137-0c47-41ea-928c-37231a1ff797","keyword":"强度","originalKeyword":"强度"}],"language":"zh","publisherId":"bqclkxygc200403004","title":"热压法制备Bi2Te3基热电材料的组织与性能","volume":"27","year":"2004"},{"abstractinfo":"本文在540-640℃温度范闱内,研究了真空热压温度对15%(体积分数)SiCp/2009Al复合材料的微观组织和力学性能的影响.复合材料的致密度随热压温度升高而增加,在580℃达到最大值,高于580℃时下降.TEM界面观察发现:热压温度为540和560℃时复合材料界面结合较弱,界面出现开裂现象;当热压温度为580和600℃时界面清洁,结合较好;当温度高于620℃时,复合材料界面有MgAl2O4和Al4C3形成.复合材料的强度和塑性均在580℃取得最佳值.拉伸断口观察发现:热压温度低于560℃时,复合材料的断裂以界面脱黏为主;热压温度在580-600℃之间时,复合材料以基体的韧性断裂和颗粒的断裂为主;热压温度高于620℃时,复合材料界面处MgAl2O4和A14Ca脆性相的形成使界面开裂,复合材料的断裂为基体韧性断裂、界面开裂以及SiC颗粒断裂.","authors":[{"authorName":"金鹏","id":"2e8ae125-f627-4166-a43b-87e7d0a2690e","originalAuthorName":"金鹏"},{"authorName":"肖伯律","id":"7c2e5919-00a4-48e7-937d-cd88a3531825","originalAuthorName":"肖伯律"},{"authorName":"王全兆","id":"e1494045-f5e1-4222-aa18-13eb3bebb583","originalAuthorName":"王全兆"},{"authorName":"马宗义","id":"17a7e102-34ae-43e3-80ff-eae263c24e18","originalAuthorName":"马宗义"},{"authorName":"刘越","id":"17d98b0e-f052-43ed-a41d-cdcd65381f2a","originalAuthorName":"刘越"},{"authorName":"李曙","id":"aa87522a-38bd-4373-a35b-4e69114e367a","originalAuthorName":"李曙"}],"doi":"10.3724/SP.J.1037.2010.00413","fpage":"298","id":"dc4876a2-d391-408c-8652-4acbaee2c160","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d2c90c95-28af-40d4-8e20-c12bd719c0e6","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"1be90525-b160-4e92-a9ce-d942830917ad","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"4d5ae1eb-6d22-45fb-b752-fac1b267ffaa","keyword":"界面","originalKeyword":"界面"},{"id":"4e1fb5af-b75a-44d4-9ce9-b5bda9a7d035","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb201103007","title":"热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响","volume":"47","year":"2011"},{"abstractinfo":"将Cu、Cr、Nb元素粉经25 h机械合金化活化处理后,在1000 ℃保温1 h的工艺下通过真空热压来制备新型Cu/Cr2Nb触头材料,研究了不同成分Cu/Cr2Nb触头材料的组织和性能.结果表明,在机械合金化过程中未能合成出Cr2Nb,但在热压过程中得到了充分合成和析出,所制备的Cu/Cr2Nb触头材料的组织均匀细小,Cr2Nb相尺寸在几个微米.当Cr2Nb含量(质量分数)为25%~35%时,Cu/Cr2Nb触头材料的致密度与熔渗法和热压法制备的常规CuCr50触头材料相当,但前者的硬度和电导率却明显高于后者.","authors":[{"authorName":"鲁世强","id":"2e571942-b72b-4a19-9ac4-2687f2e6755a","originalAuthorName":"鲁世强"},{"authorName":"胡春文","id":"5cb0f30b-a5ed-4abf-b0b9-f5d2c0edb865","originalAuthorName":"胡春文"},{"authorName":"王克鲁","id":"7a35a181-1060-4a71-acc1-2423a589a6da","originalAuthorName":"王克鲁"},{"authorName":"李鑫","id":"13c544f0-8b44-4831-99dc-d0287c4910ed","originalAuthorName":"李鑫"},{"authorName":"肖璇","id":"593858b8-d839-4511-8ee7-1fd023f92054","originalAuthorName":"肖璇"},{"authorName":"贺跃辉","id":"e37ed1ef-885b-4fbd-82b1-07f36a33edc5","originalAuthorName":"贺跃辉"}],"doi":"","fpage":"842","id":"1de38f6b-45cf-47e4-8bdd-ac18cbb53d13","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"7581b30f-4abc-4d02-ae65-830d28c20ba0","keyword":"Cu/Cr2Nb触头材料","originalKeyword":"Cu/Cr2Nb触头材料"},{"id":"1d2d659d-2fd4-48fc-bb0c-c801b88c42cd","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"662745f3-e52a-4c2c-bc8b-03b1fdbf1867","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"395e50eb-cfc1-44ed-b8ed-596e6c60aab4","keyword":"组织与性能","originalKeyword":"组织与性能"}],"language":"zh","publisherId":"xyjsclygc200905021","title":"机械活化热压制备新型Cu/Cr2Nb触头材料的组织与性能","volume":"38","year":"2009"},{"abstractinfo":"真空热压烧结法是最经济、高效地制备ZnS多晶的方法之一.ZnS多晶的红外透过率是衡量材料品质的重要参数.本文运用TEM、XRD和化学分析方法,研究了原料粉末特性和热压工艺参数对热压ZnS多晶红外透过率的影响,并确定了合理的热压工艺参数.运用该方法制备的ZnS多晶6mm厚的试样,8~12μm波段平均红外透过率为66.7%.","authors":[{"authorName":"李玉斌","id":"a97dad3b-d7f4-4d90-8ea6-edfe724df80c","originalAuthorName":"李玉斌"},{"authorName":"徐运生","id":"7acd6340-5faa-4519-8d73-a3db8755419c","originalAuthorName":"徐运生"}],"doi":"10.3969/j.issn.1000-985X.2003.05.021","fpage":"508","id":"3285b82b-f2b8-42f6-8cdb-595ca8356689","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e559a71f-41af-48b8-8145-fdb89f338765","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"57732968-e85e-4614-9c4d-7202d9329fd4","keyword":"红外透过率","originalKeyword":"红外透过率"},{"id":"0f0b00f2-c743-493e-aba9-ee7c0c8338f1","keyword":"ZnS多晶体","originalKeyword":"ZnS多晶体"},{"id":"18b698da-ba38-4d02-8e4b-f1d22b324942","keyword":"8~12μm长波","originalKeyword":"8~12μm长波"}],"language":"zh","publisherId":"rgjtxb98200305021","title":"8~12μm长波红外材料ZnS多晶的制备","volume":"32","year":"2003"},{"abstractinfo":"为了研究热压温度和AIN含量对AIN-堇青石玻璃复合材料烧结和介电性能的影响,采用真空热压方法在900~1000℃低温烧结制备AIN-堇青石玻璃复合材料,利用X射线衍射、扫描电镜和阻抗分析仪对复合材料的微结构和介电性能进行了研究,结果表明,随着热压温度的提高,复合材料的相对密度增加,复合材料的介电常数和介电损耗减少;在一定的热压温度下,复合材料的介电常数和介电损耗随着AIN引入量的增加而增加,从复合材料的相组成和结构角度对以上结果予以解释,提高热压温度和增加α-堇青石数量均有利于降低复合材料的介电常数和介电损耗,.制备的复合材料具有低的介电常数(5.6~6.5)和低的介电损耗(≤10-3),有望用于微电子封装领域.","authors":[{"authorName":"陈国华","id":"e93c1734-597b-4797-a2de-a1ffe0a78819","originalAuthorName":"陈国华"},{"authorName":"刘心宇","id":"00312800-7e4d-4956-9100-047456797105","originalAuthorName":"刘心宇"}],"doi":"","fpage":"221","id":"11600adf-ff63-4997-aca8-052d01f6673c","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a277b6ae-103e-40ef-a494-08e08acb9eb7","keyword":"AIN","originalKeyword":"AIN"},{"id":"53e3da5d-6abd-41f4-82f8-fc75ccf7d681","keyword":"堇青石玻璃","originalKeyword":"堇青石玻璃"},{"id":"688be877-2b7e-4588-add0-b4aa1703402e","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"0d5dc970-22f4-4fcb-87b0-449283764f58","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"8935ffa9-5a88-4657-aced-ed50b97a95bb","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"clkxygy200902018","title":"AIN-堇青石玻璃复合材料的介电性能","volume":"17","year":"2009"},{"abstractinfo":"WTi合金具有低的电阻系数、良好的热稳定性能和抗氧化性能,已被成功地应用于半导体器件的扩散阻挡层.迄今为止,中国大量半导体行业用靶材仍从国外进口.因此,通过研究靶材制备工艺及性能的关系,制备出高密度、高纯度、富钛相β1(Ti,W)少的 WTi合金靶材,不仅能够把握相关领域发展方向,并且具有十分可观的市场前景.本文用行星球磨的方式对Ti、W粉末进行预处理及混合,得到不同粒度组成的混合粉末,用真空热压法对粉末进行成型,制备得到的 WTi10合金.利用X射线衍射仪(XRD)、金相和扫描电子显微镜(SEM)分析混合粉末的粒度组成,并对合金的结构和形貌进行分析,采用排水法及ICP测试仪,分析合金的密度及杂质含量.结果表明,在温度1200℃,压力30 MPa的真空热压条件下,制备得到的4个样品均已形成体心立方β相的WTi固溶体.且混粉球磨时间对 WTi固溶体的峰位及峰强没有影响.但粉末混合球磨时间对热压后合金的微观组织形貌影响较大,随着混粉时间的延长,富钛相β1呈先减少后增加的趋势,混粉3 h的热压得到的样品黑色富 Ti固溶体相区域最少,性能最优,合金的密度均达到理论密度的99.48%,纯度>99.97%.采用该方法制备得到的WTi10合金可用于磁控溅射制备 WTi扩散阻挡层.以上研究为真空热压法制备半导体行业用钨钛靶材的研究提供一定的基础研究数据.","authors":[{"authorName":"张俊敏","id":"4038a0c5-c84b-4b61-9a3a-e34584c13f60","originalAuthorName":"张俊敏"},{"authorName":"闻明","id":"815b691a-f17c-4017-af8e-29dd16779979","originalAuthorName":"闻明"},{"authorName":"谭志龙","id":"4e1b9e25-47de-41f3-93ee-1f0a50b90039","originalAuthorName":"谭志龙"},{"authorName":"王传军","id":"8867b872-f4d4-4453-ad74-c4b588199a18","originalAuthorName":"王传军"},{"authorName":"沈月","id":"43265f56-a22f-4ba8-889b-b6a806ab39ed","originalAuthorName":"沈月"},{"authorName":"易伟","id":"1aa666c6-41aa-45da-887a-501c4f3cacde","originalAuthorName":"易伟"},{"authorName":"管伟明","id":"b4af7ca3-858c-412f-8ae2-ec820922f073","originalAuthorName":"管伟明"},{"authorName":"李艳琼","id":"a2941693-2bf8-4687-a452-dc190c07cf3e","originalAuthorName":"李艳琼"}],"doi":"10.3969/j.issn.1001-9731.2016.增刊(Ⅱ).025","fpage":"125","id":"a2044ac4-ebce-4991-81a5-7ecd2a56de7d","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"50a1ebd2-05ac-44bf-8daf-6bfa473ef253","keyword":"扩散阻挡层","originalKeyword":"扩散阻挡层"},{"id":"f2098a72-2ba4-46aa-9e95-939b3b1b68da","keyword":"WTi","originalKeyword":"WTi"},{"id":"aec51dd7-9dc7-4595-81ba-e07cf59f4868","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"db2c45af-1672-429d-95be-bce33735a001","keyword":"相组成","originalKeyword":"相组成"},{"id":"58c50c93-3c57-49bb-a6ba-677bf96967ce","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"gncl2016z2025","title":"扩散阻挡层用WT i合金的制备及其表征?","volume":"47","year":"2016"},{"abstractinfo":"以Ti粉、Al粉和CuO粉为原料,通过真空热压烧结工艺合成了Al2O3-Al6.1Cu1.2Ti2.7/TiAl复合材料,采用XRD、SEM及力学性能万能实验机分析研究了材料的相组成、微观结构及力学性能.结果表明:经过1000 ℃下热压2 h所得样品反应完全,复合材料基体主要由Al6.1Cu1.2Ti2.7与TiAl双相组成,Al2O3颗粒弥散分布于基体晶粒间.当原料配比中CuO含量为10wt%时材料弯曲强度达到最大值273.1 MPa;当CuO含量在14wt%时复合材料断裂韧性达到最大值6.7 MPa·m1/2.由于CuO的掺杂量增加,热压所得复合材料基体相组织呈现从块体到层状结构变化,自生Al2O3相呈现出由弥散分布到局部团聚现象变化.","authors":[{"authorName":"杨志波","id":"c876cb47-a8f8-4921-833b-8c8fa56ee473","originalAuthorName":"杨志波"},{"authorName":"王芬","id":"024a4e90-b02b-481c-a87f-6b2dd7bc0224","originalAuthorName":"王芬"},{"authorName":"朱建锋","id":"4eb5fbbe-e7f5-425c-b2d4-6e322a4b4517","originalAuthorName":"朱建锋"},{"authorName":"刘波波","id":"3e3f7526-f7ca-4bc1-b5fb-508399ce5dac","originalAuthorName":"刘波波"}],"doi":"","fpage":"399","id":"8dbefbcd-dc3d-41e8-894d-62a6a3dca427","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"5448c534-356d-49cf-9e3b-cbaef8f2d8cf","keyword":"TiAl基复合材料","originalKeyword":"TiAl基复合材料"},{"id":"bed696f6-3086-4b60-b16d-24597063bd57","keyword":"氧化铜","originalKeyword":"氧化铜"},{"id":"a29a75f2-a1cb-44b7-b01e-4b19105dbef0","keyword":"真空热压","originalKeyword":"真空热压"},{"id":"412eb3a4-893c-40ad-8cb2-886fcbe284b3","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"fb5dd037-db6e-4a64-844d-7415f52d7f04","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"gsytb201002028","title":"Ti-Al-CuO系原位反应合成TiAl基复合材料的研究","volume":"29","year":"2010"}],"totalpage":681,"totalrecord":6807}