{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对高压直流电缆的发展历史,介绍了高压直流电缆的基本原理、应用现状以及技术瓶颈,指出我国研发高压直流电缆的必要性和紧迫性,并对未来高压直流电缆的发展方向进行了展望.","authors":[{"authorName":"张翀","id":"e8b16e72-83df-4fea-88b4-62d4102de83c","originalAuthorName":"张翀"},{"authorName":"查俊伟","id":"9ea2f10a-ef2b-459d-b0b8-eea3a166a27c","originalAuthorName":"查俊伟"},{"authorName":"王思蛟","id":"c6792db0-d7d2-4c81-9bad-f35e844705ac","originalAuthorName":"王思蛟"},{"authorName":"巫运辉","id":"7a99d49e-3941-4cc0-8f26-5a5d6c1f4141","originalAuthorName":"巫运辉"},{"authorName":"闫轰达","id":"0926eb1f-448d-48d6-8a91-1cab2d1be736","originalAuthorName":"闫轰达"},{"authorName":"李维康","id":"e19ce535-e8a8-4c20-9df6-fecea586adbe","originalAuthorName":"李维康"},{"authorName":"陈新","id":"ce4f9d47-634b-4b5f-8402-5b67a72fb212","originalAuthorName":"陈新"},{"authorName":"党智敏","id":"566ea25f-be31-47cd-825f-ccd3276577fa","originalAuthorName":"党智敏"}],"doi":"10.16790/j.cnki.1009-9239.im.2016.02.001","fpage":"1","id":"8ec0c417-dbb0-44fc-8c39-062c43d968a4","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"20aefe06-8869-4a50-86e9-53019353e70a","keyword":"高压直流电缆","originalKeyword":"高压直流电缆"},{"id":"a704cff8-ba5a-4849-b6e8-22326f7f944c","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"a986d7b3-68b8-472f-93ea-9d4288c71cbf","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"a6bed4ee-df0c-40fb-9772-a1113a755e75","keyword":"空间电荷","originalKeyword":"空间电荷"},{"id":"6fd539fe-3564-425c-a493-dc85be91b878","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"jycltx201602001","title":"高压直流电缆绝缘材料的发展与展望","volume":"","year":"2016"},{"abstractinfo":"采用原位加热还原的工艺将氧化石墨烯/热塑性聚氨酯复合材料进行还原,得到了不同体积分数的热还原石墨烯/热塑性聚氨酯复合材料,并对其热还原温度及压阻特性进行了分析.结果表明:200℃为该复合材料体系适宜的还原温度,在此温度下保持2 h后,氧化石墨烯复合材料的电性能优异,填料分散均匀,其中石墨烯体积分数分别为2.42%与3.58%的复合材料表现出优异的压阻重复性,为制备高性能柔性压阻复合材料提供了一种新途径.","authors":[{"authorName":"侯毅","id":"d00c45c1-6ac8-4f23-8759-32c4f27931ab","originalAuthorName":"侯毅"},{"authorName":"王东瑞","id":"c02e3983-6c4f-4de5-b298-e6226193d719","originalAuthorName":"王东瑞"},{"authorName":"张波","id":"29a77067-a211-4382-ba1b-4a818cb54a88","originalAuthorName":"张波"},{"authorName":"黄蔚","id":"802a4b18-5dd9-4d44-8acc-dc47be8d00b6","originalAuthorName":"黄蔚"},{"authorName":"查俊伟","id":"1395afb1-319c-4e40-bc7f-bb4e51b848c4","originalAuthorName":"查俊伟"},{"authorName":"党智敏","id":"d31c06ad-71d4-4b16-ba19-4bb390a9450a","originalAuthorName":"党智敏"}],"doi":"","fpage":"1","id":"65b15d08-a67c-4b90-a6d7-6370e9cb5cfa","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"5056613e-f334-4922-9b7a-fc083aa2ef30","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"dece6b8a-3bf7-4405-9249-2e66e1415e23","keyword":"热塑性聚氨酯","originalKeyword":"热塑性聚氨酯"},{"id":"26c9ef0f-0cf5-42a1-b593-41800ad4724d","keyword":"原位加热还原工艺","originalKeyword":"原位加热还原工艺"},{"id":"f988a689-a518-40aa-ba46-9c58888edf38","keyword":"压阻特性","originalKeyword":"压阻特性"}],"language":"zh","publisherId":"jycltx201206001","title":"导电石墨烯/热塑性聚氨酯的制备及其压阻性能研究","volume":"","year":"2012"},{"abstractinfo":"将无机纳米粒子(TiO2)分散在聚酰胺酸(PAA)前躯体中,经过原位聚合的方法制备出纳米TiO2粒子分散均匀的聚酰亚胺/纳米TiO2复合杂化膜,研究了不同掺杂含量对杂化膜的介电、物理等特性的影响,建立了耐电晕模型.同时通过FTIR研究其亚胺化程度以及用SEM分析纳米粒子在聚酰亚胺基体中的分散状态.结果表明,纳米粒子在PI基体中分散均匀,TiO2的引入对杂化膜的介电常数、介质损耗因数、电气强度和耐电晕性能产生了很大的影响,随着TiO2含量的增加,耐电晕性能得到大幅度的提高,TiO225%含量时介电常数为5.1左右,介质损耗因数在0.03以下,电气强度为110 MV/m,并在实验的基础上初步建立了耐电晕性能的老化机理.因此,在高耐热性绝缘材料中均匀分散一些纳米无机粒子,可以大幅度提高抗高频脉冲尖峰电压和耐电晕等方面的性能.","authors":[{"authorName":"查俊伟","id":"0b45e0e7-13e7-4a91-a628-208b693bf2c0","originalAuthorName":"查俊伟"},{"authorName":"党智敏","id":"c2a02aa0-2614-4419-9011-627c650990ef","originalAuthorName":"党智敏"}],"doi":"10.3969/j.issn.1009-9239.2008.06.002","fpage":"4","id":"707dd69e-18e4-4316-871f-e77fb1ee646b","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"d9af9eca-6cf6-4663-bcb3-89062114a430","keyword":"耐电晕","originalKeyword":"耐电晕"},{"id":"21daee28-ddc3-4efe-97e8-e4bed19fe2c2","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"e30c86de-8f6e-46bc-8152-71384782bfb4","keyword":"纳米杂化膜","originalKeyword":"纳米杂化膜"},{"id":"f9f13c94-aefd-442a-9ee6-5b2d64a6ccc8","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"jycltx200806002","title":"无机纳米/聚酰亚胺复合杂化膜的绝缘特性研究","volume":"41","year":"2008"},{"abstractinfo":"以自制的复合磺酸钙基润滑脂为基体,采用硅烷偶联剂表面改性后的纳米铜、纳米镍、纳米二硫化钨和纳米聚酰胺为功能填料,制备了高分子润滑脂涂层。分析了不同聚酰胺添加量对体系的滴点、锥入度和极压性能的影响。结果表明:改性后的功能填料对体系的各项性能都有一定程度的改善,当聚酰胺添加量为2%时,高分子润滑脂涂层的综合性能最优,滴点达到206℃,锥入度达到277(0.1 mm),极压值达到931 N。","authors":[{"authorName":"杨贤辉","id":"d234811c-4fea-46d1-bafb-7b21eedb828d","originalAuthorName":"杨贤辉"},{"authorName":"韩澎","id":"924f926d-084b-425d-b8a3-0b99626893b4","originalAuthorName":"韩澎"},{"authorName":"张翀","id":"487a7b59-7cf4-4fb9-b6b1-296750d1ac82","originalAuthorName":"张翀"},{"authorName":"查俊伟","id":"355274e1-58a9-4915-b6d8-371c12ee7c9c","originalAuthorName":"查俊伟"},{"authorName":"党智敏","id":"54e06943-1fee-4232-a00d-3f0e68fa5af4","originalAuthorName":"党智敏"}],"doi":"","fpage":"32","id":"8863dff6-8e17-4d71-a752-1820be8a2803","issue":"10","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"bcf69b49-45a0-4a6a-be79-8978ea9b3352","keyword":"复合磺酸钙基脂","originalKeyword":"复合磺酸钙基脂"},{"id":"1749e108-8416-486f-b13d-8782c318e6a1","keyword":"紧固件","originalKeyword":"紧固件"},{"id":"eb3d936e-303a-4f68-97c1-d005a4940248","keyword":"纳米填料","originalKeyword":"纳米填料"},{"id":"7d0e2ae6-bebc-4df0-881f-3b884083444c","keyword":"聚酰胺","originalKeyword":"聚酰胺"}],"language":"zh","publisherId":"jycltx201510007","title":"电力系统紧固件用新型高分子涂层材料制备与性能研究","volume":"","year":"2015"},{"abstractinfo":"用单体4,4′-二胺基二苯醚(ODA)和均苯四甲酸二酐(PMDA)添加纳米SiO2,在溶剂N,N-二甲基乙酰胺(DMAC)中,采用原位聚合法合成SiO2/聚酰亚胺(PI)复合薄膜。用氢氟酸刻蚀SiO2纳米粒子,引入纳米微孔,形成含有微孔的PI薄膜。造孔剂含量为15%时,薄膜的介电常数从纯聚酰亚胺的3.54降低至3.05(1kHz)。用透射电镜表征微孔结构,分析了微孔孔径和造孔剂(SiO2)含量对薄膜介电常数、耐热性、疏水性和机械强度等性质的影响。","authors":[{"authorName":"贾红娟","id":"17f2c7ca-ed95-49eb-9d96-36de16772d27","originalAuthorName":"贾红娟"},{"authorName":"尹训茜","id":"9ac74b3e-818b-40ce-a29b-017ac8cb5566","originalAuthorName":"尹训茜"},{"authorName":"查俊伟","id":"66873941-d052-40ad-99d3-a698e25824ff","originalAuthorName":"查俊伟"},{"authorName":"施昌勇","id":"b9b487c7-1c46-42db-881b-40569851d7b9","originalAuthorName":"施昌勇"},{"authorName":"党智敏","id":"348b79ab-8b2c-48ca-a6d7-45aeb6378311","originalAuthorName":"党智敏"}],"doi":"","fpage":"1646","id":"8b117f84-e782-4dac-a9d8-90beba05d49e","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"50b23045-90ba-4756-a253-b21b21cfc8d4","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"835c48e3-d9ca-4de6-b617-ff6fd32da340","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"9aced964-a37b-4568-937d-412186db9e4b","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"b9257e05-d4c6-441c-ae8a-a500f162b398","keyword":"纳米微孔","originalKeyword":"纳米微孔"}],"language":"zh","publisherId":"gncl201109027","title":"低介电常数聚酰亚胺薄膜的制备与性能研究","volume":"42","year":"2011"},{"abstractinfo":"利用硅烷偶联剂KH550、KH570对无机纳米TiO2粒子进行表面改性,经机械共混及压延成型方法制备出3种界面结构的TiO2/室温硫化硅橡胶(RTV)介电弹性体复合材料.利用FTIR及DSC研究TiO2纳米粒子的表面改性情况,并研究不同硅烷偶联剂对复合材料介电性能和力学性能的影响.结果表明:KH550改性TiO2掺杂的复合材料较纯TiO2或KH570改性掺杂的复合材料其功能性明显提高.采用KH550改性TiO2使得复合材料拥有更高的介电常数,更低的弹性模量,使电-机转化敏感度较未改性前提高了57.4%.","authors":[{"authorName":"赵航","id":"46a55083-a279-4c64-bdae-298f75e61717","originalAuthorName":"赵航"},{"authorName":"查俊伟","id":"42cc4a89-7949-4a3f-a7cb-b7448219a39f","originalAuthorName":"查俊伟"},{"authorName":"周涛","id":"d6b08e9d-946f-4cfb-b175-500e71c6f742","originalAuthorName":"周涛"},{"authorName":"方也","id":"03cdd4ec-ffda-4e84-8968-94aad6a96a2a","originalAuthorName":"方也"},{"authorName":"白晓飞","id":"2f462795-eec2-4ad6-af67-c611eab44c26","originalAuthorName":"白晓飞"},{"authorName":"党智敏","id":"7df1d628-28b8-415f-871a-5ade9b4cc0a2","originalAuthorName":"党智敏"}],"doi":"","fpage":"1","id":"c5eb8631-478d-43e0-a9b4-302a6993e22f","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"488b433b-ca53-493f-aff9-8c16de72d7cf","keyword":"介电弹性体","originalKeyword":"介电弹性体"},{"id":"da927d1f-cea1-47a4-941e-1cc6f270cf36","keyword":"半导体陶瓷","originalKeyword":"半导体陶瓷"},{"id":"1148e374-fb79-49eb-81d3-67018672e714","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"39b8e3fa-59c4-4dce-a5ba-df1024b2ed39","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"2cbd8388-8c24-4eef-96b2-f10627ce23d9","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"1d70ff14-e3f9-4f2a-aa17-e12eeff43343","keyword":"硅烷偶联剂","originalKeyword":"硅烷偶联剂"}],"language":"zh","publisherId":"jycltx201205001","title":"硅烷偶联剂对介电弹性体复合材料电-机转化敏感度的影响","volume":"","year":"2012"},{"abstractinfo":"采用熔融共混及热压交联的方法制备了乙烯醋酸乙烯酯(EVA)/碳黑(CB)-多壁碳纳米管(MWNTs)新型半导电屏蔽复合材料.研究了不同MWNTs含量对半导电屏蔽复合材料电性能及力学性能的影响.结果表明:MWNTs的引入使复合材料变温下的电阻率稳定性提高,且MWNTs含量越大,效果越明显;MWNTs的引入使复合材料的断裂伸长率和拉伸强度上升,随着MWNTs用量的增加,力学性能增强效果下降;MWNTs的引入使复合材料在拉伸时的电阻上升,且MWNTs用量越大,电阻上升幅度越明显.","authors":[{"authorName":"方也","id":"30f47396-7aaa-4ef7-b2e1-dd333bfa456a","originalAuthorName":"方也"},{"authorName":"查俊伟","id":"af33a905-aea2-4321-ac0c-4947faebc7bb","originalAuthorName":"查俊伟"},{"authorName":"赵航","id":"42a8aafd-3f8d-4d22-9bd1-75ad3e13349f","originalAuthorName":"赵航"},{"authorName":"白晓飞","id":"165d3dd9-36b3-48e9-bd82-8114689cb111","originalAuthorName":"白晓飞"},{"authorName":"侯毅","id":"640249b6-1e3f-4cf4-ba74-ca9f54858dda","originalAuthorName":"侯毅"},{"authorName":"党智敏","id":"7f675568-920a-4d15-b93c-b6e7ef08fa78","originalAuthorName":"党智敏"}],"doi":"","fpage":"20","id":"d61c150a-a01e-42dd-aa1d-3b988b2d3d87","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"b082713a-0aba-4fdc-ab59-43d143cede16","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"14fc021b-4943-4bf8-b4ac-7e7a6fb527f9","keyword":"碳黑","originalKeyword":"碳黑"},{"id":"f6a168eb-834b-4115-872a-4499e56c13d7","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"7c9b255f-b339-4486-a669-2a24c1bae664","keyword":"半导电屏蔽料","originalKeyword":"半导电屏蔽料"}],"language":"zh","publisherId":"jycltx201206006","title":"EVA/CB-MWNTs半导电屏蔽材料的制备与电性能研究","volume":"","year":"2012"},{"abstractinfo":"对钛酸钡(BT)纳米粒子进行了表面改性,采用原位聚合法将钛酸钡与聚酰亚胺复合制备了高介电BT/PI复合薄膜,为了进一步提高介电性能,将第三组分炭黑掺入其中,并对其进行了红外光谱、扫描电镜(SEM)分析和介电性能测试.结果表明:与未改性的复合薄膜相比,改性后纳米粒子在基体中分散更加均匀,复合薄膜的介电性能明显提高,可用于制备嵌入式电容中的电介质材料.","authors":[{"authorName":"白晓飞","id":"e6d9268b-2510-447a-8450-32686edae644","originalAuthorName":"白晓飞"},{"authorName":"查俊伟","id":"7a4552a9-bec3-4c98-b7c0-d4c33e989b29","originalAuthorName":"查俊伟"},{"authorName":"方也","id":"aec030ed-dfad-489a-adb3-c610a78db0fc","originalAuthorName":"方也"},{"authorName":"赵航","id":"c8b5eac3-7f1a-4952-872f-c5caa4428815","originalAuthorName":"赵航"},{"authorName":"党智敏","id":"c9ca93a7-892c-49b9-8698-2fb1ce75f0bd","originalAuthorName":"党智敏"}],"doi":"","fpage":"14","id":"f6c3e2aa-4c89-4b4e-970d-3580fbc7ee8f","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"1b02f96a-0921-4b4b-a645-d5f5f97d7a2f","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"53a5af94-b57f-4877-97c9-14178a56dda2","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"44c7bec8-fc7f-45dd-a2ba-4410b956dac7","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"jycltx201204004","title":"嵌入式电容用钛酸钡/聚酰亚胺复合薄膜的制备及性能研究","volume":"","year":"2012"},{"abstractinfo":"塑料高压直流电缆在电力输运中,绝缘层容易发生电子及空穴注入并局部积聚,形成空间电荷包,长期运行容易引发绝缘失效.为此,抑制电子及空穴的注入、积聚,防止空间电荷包的产生是制备塑料高压直流电缆的关键技术.通过制备多层介孔结构纳米MgO,采用低沸点溶剂法,实现了纳米MgO在低密度聚乙烯(LDPE)中的均匀分散.研究了1wt%纳米MgO/LDPE复合材料的空间电荷行为、直流击穿强度、热刺激电流及介电特性.结果表明:添加1wt%纳米MgO的LDPE在70 kV/mm电场下有效地抑制了空间电荷积聚,提高了直流击穿强度,降低了介电常数;热刺激电流研究表明纳米MgO形成了新的陷阱,有效捕获了载流子,形成独立电场,避免了局部有效电场,形成新的势垒,抑制了电极载流子的注入,最终抑制了空间电荷积聚.","authors":[{"authorName":"巫运辉","id":"956746ab-9da2-4080-b9e8-4c69f1c8a925","originalAuthorName":"巫运辉"},{"authorName":"查俊伟","id":"c98fa882-3cee-43f9-994a-b13f01d53018","originalAuthorName":"查俊伟"},{"authorName":"王思蛟","id":"b20652b2-9f7e-4b4f-a3ab-c8a1596f52bd","originalAuthorName":"王思蛟"},{"authorName":"闫轰达","id":"cbbce27f-4fd9-4a23-9fc9-136df0edeb51","originalAuthorName":"闫轰达"},{"authorName":"党智敏","id":"f9a1b7b4-3f64-4a4a-96d6-3c2416ef64ef","originalAuthorName":"党智敏"}],"doi":"10.13801/j.cnki.fhclxb.20150528.006","fpage":"503","id":"f3d5d118-6033-4606-a9fb-972ccbce2afd","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"beef61f7-1fc7-4374-b3e1-d0a9428897f9","keyword":"多层介孔","originalKeyword":"多层介孔"},{"id":"422f9bc6-0a7d-4d16-8f05-87ae166da458","keyword":"溶剂法","originalKeyword":"溶剂法"},{"id":"e4e1b470-9609-40fa-a8cc-42b040c6f413","keyword":"空间电荷","originalKeyword":"空间电荷"},{"id":"1b38fd73-552b-4b73-9599-a4d193578bef","keyword":"击穿强度","originalKeyword":"击穿强度"},{"id":"1685277e-892e-4e44-b9c8-6bf317b6015a","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"fhclxb201603008","title":"多层介孔纳米MgO/低密度聚乙烯复合材料的制备及其绝缘性能","volume":"33","year":"2016"},{"abstractinfo":"通过热处理方法得到表面不含羟基(—OH)的纳米MgO颗粒,采用母料法制备了10wt%纳米MgO/低密度聚乙烯(LDPE)复合材料,研究了纳米MgO/LDPE复合材料在70 kV/mm直流电场下的空间电荷特性,评估了该方法对纳米颗粒分散的效果及工业化应用推广价值。结果表明:表面羟基化对纳米 MgO/LDPE 复合材料变温体积电阻率及介电特性的影响不大,空间电荷积累量增加。当纳米 MgO 掺杂量为1 wt%时,复合材料的电性能最佳。","authors":[{"authorName":"王思蛟","id":"bc4b2089-8e4a-4fbf-943f-93f02e82b4b6","originalAuthorName":"王思蛟"},{"authorName":"巫运辉","id":"89476138-70ac-4c7d-8855-3bf6523b78e8","originalAuthorName":"巫运辉"},{"authorName":"查俊伟","id":"7f7c6e2b-60b5-49c5-b9a7-43708563f5e4","originalAuthorName":"查俊伟"},{"authorName":"吴东红","id":"e8874fec-4dc5-4ec6-84a9-84f77b9011a1","originalAuthorName":"吴东红"},{"authorName":"党智敏","id":"3bc1d83d-9824-41c5-a8a9-db3c2126d1dc","originalAuthorName":"党智敏"}],"doi":"10.13801/j.cnki.fhclxb.20151201.004","fpage":"1179","id":"4f03fb5a-e634-4e77-a835-83d90ba97f41","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a0f8dde8-dbe4-4eca-934c-fb4ecf712f21","keyword":"低密度聚乙烯","originalKeyword":"低密度聚乙烯"},{"id":"dfb938b9-2d85-4474-8c5f-256a5878d6d4","keyword":"纳米 MgO","originalKeyword":"纳米 MgO"},{"id":"1145c81d-4a4a-407f-9ec9-7a5d496f564f","keyword":"母料法","originalKeyword":"母料法"},{"id":"1f4ad49b-cf25-4753-972f-b8aec3937a43","keyword":"空间电荷","originalKeyword":"空间电荷"},{"id":"6859afbd-b15a-4e36-8843-25d281185b80","keyword":"直流电缆","originalKeyword":"直流电缆"}],"language":"zh","publisherId":"fhclxb201606006","title":"纳米Mg O/低密度聚乙烯高压直流电缆复合材料的制备与性能","volume":"33","year":"2016"}],"totalpage":16,"totalrecord":158}