{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以Li2CO3和α-Fe2O3粉体为原料,通过高能球磨的机械化学处理,制备出具有固溶体结构的Li铁氧体的前驱体.将前驱体在远低于固相反应所需的温度下进行热处理,得到Li铁氧体粉体.这一反应是通过LiFeO2作为中间相完成的.用Mssbauer谱、XRD、IR光谱、TEM及VSM方法对制得的Li铁氧体粉体进行了表征.结果表明,所得铁氧体为纳米粒子,具有有序结构,其比饱和磁化强度高于用湿化学方法所得的纳米粒子,且具有较高的矫顽力.","authors":[{"authorName":"姜继森","id":"47b1e54e-056f-44d6-9ef0-80c41e76eec2","originalAuthorName":"姜继森"},{"authorName":"高濂","id":"3b7d5d16-b425-43cd-b4ed-8da88cc443d4","originalAuthorName":"高濂"},{"authorName":"郭景坤","id":"15da98d4-17a3-42c5-b85c-9f9d50abf708","originalAuthorName":"郭景坤"},{"authorName":"杨燮龙","id":"b882b945-74ec-4f61-96c4-a64f94f935b7","originalAuthorName":"杨燮龙"},{"authorName":"沈鸿烈","id":"772e6656-398f-4e04-be06-85d958946d61","originalAuthorName":"沈鸿烈"}],"doi":"10.3321/j.issn:1000-324X.1999.03.010","fpage":"385","id":"4ff4cb95-fe50-482d-887c-d9acbec6c1b2","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f07ce614-d49f-472a-ab84-c51e06dd52d3","keyword":"Li铁氧体","originalKeyword":"Li铁氧体"},{"id":"753e8512-7e38-4efa-97a9-32421eb8d63f","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"5106d863-0f1b-452b-9c9a-eafa1b04b651","keyword":"高能球磨","originalKeyword":"高能球磨"},{"id":"6e2250b2-1b7b-4712-a0d9-c23491ce52ea","keyword":"机械化学处理","originalKeyword":"机械化学处理"}],"language":"zh","publisherId":"wjclxb199903010","title":"固相法合成Li铁氧体纳米粒子","volume":"14","year":"1999"},{"abstractinfo":"介绍了机械化学的发展简史和基本特征,简述了机械化学过程中粉体(晶体)结构变化、粉体物理化学性质变化和粉体机械化学反应的研究现状,展望了机械化学、特别是其中的机械活化的研究发展前景.","authors":[{"authorName":"彭秧锡","id":"be5b9e97-3e86-45ec-a098-aee09c8f1b2a","originalAuthorName":"彭秧锡"},{"authorName":"陈启元","id":"26d06513-e45d-4aed-a7e3-eab5bba9599f","originalAuthorName":"陈启元"},{"authorName":"刘士军","id":"fb68fdb5-105e-430a-abb1-7fb90e828f28","originalAuthorName":"刘士军"},{"authorName":"胡惠萍","id":"42a31327-fa85-4afd-8b23-e0d840b2f66a","originalAuthorName":"胡惠萍"},{"authorName":"金小容","id":"d163bebb-9a35-4db2-9069-c80b29df1ddd","originalAuthorName":"金小容"}],"doi":"","fpage":"113","id":"70b429e2-35eb-48c1-92b1-5bf1c43ee4c0","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3fdc196a-807d-4ac5-ab4e-a34ef3c2b899","keyword":"机械化学","originalKeyword":"机械化学"},{"id":"84d97958-eeb0-4b9f-9cc6-1ded5818e927","keyword":"机械活化","originalKeyword":"机械活化"},{"id":"27b09b5d-b71e-40f0-8898-f74e6e806509","keyword":"发展","originalKeyword":"发展"}],"language":"zh","publisherId":"clkxygy200901028","title":"机械化学的研究发展现状与展望","volume":"17","year":"2009"},{"abstractinfo":"利用机械化学法合成了单相ZnO粉体,XRD分析结果表明,ZnSO4/NaOH(mol比)在1/2.1~1/3.0之间均可合成ZnO粒子,ZnO产率在ZnSO4/NaOH为1/2.5时最大,TEM分析表明,ZnO粒子的粒径在40~80nm范围,对于反应机理,认为是固-固反应中放出的大量的热,使Zn(OH)2直接转化为ZnO粒子,光吸收性能表明,纳米ZnO粉体的紫外吸收性能(200~400nm)较普通ZnO粉体强得多。","authors":[{"authorName":"林元华","id":"a67ce81c-779c-41d1-a2cc-60cf963fe6c8","originalAuthorName":"林元华"},{"authorName":"翟俊宜","id":"3dd64e4a-2d74-42e4-8c1d-eddb2caee4b2","originalAuthorName":"翟俊宜"},{"authorName":"王海峰","id":"6ca9eab9-137b-43bf-807a-a50393d7f689","originalAuthorName":"王海峰"},{"authorName":"蔡宁","id":"39e698e3-6ff8-481e-a318-a7a9f368eb6e","originalAuthorName":"蔡宁"},{"authorName":"南策文","id":"8755d48a-4ae2-45ea-a9d9-601195797335","originalAuthorName":"南策文"}],"categoryName":"|","doi":"","fpage":"673","id":"c242aa04-5ea2-4273-bf4f-9b18b8ff5ed0","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"828bace6-32ee-444e-9b92-40d58873a02f","keyword":"机械化学法","originalKeyword":"机械化学法"},{"id":"be0ec0fb-f9d5-484b-a68c-c3e36b62a18e","keyword":" ZnO nanoparticle","originalKeyword":" ZnO nanoparticle"},{"id":"fdb8ded2-e633-4c94-8e11-47a79b00d64f","keyword":" optical absorptivity","originalKeyword":" optical absorptivity"}],"language":"zh","publisherId":"1000-324X_2003_3_19","title":"机械化学法合成纳米ZnO粉体","volume":"18","year":"2003"},{"abstractinfo":"利用机械化学法合成了单相ZnO粉体,XRD分析结果表明,ZnSO4/NaOH(mol比)在1/2.1~1/3.0之间均可合成ZnO粒子,ZnO产率在ZnSO4/NaOH为1/2.5时最大.TEM分析表明,ZnO粒子的粒径在40~80nm范围.对于反应机理,认为是固-固反应中放出的大量的热,使Zn(OH)2直接转化为ZnO粒子.光吸收性能表明,纳米ZnO粉体的紫外吸收性能(200~400nm)较普通ZnO粉体强得多.","authors":[{"authorName":"林元华","id":"dac231d3-b9e8-44d0-90b5-1ff5f0538d59","originalAuthorName":"林元华"},{"authorName":"翟俊宜","id":"2e8777f5-75a6-42e4-a303-18622526f181","originalAuthorName":"翟俊宜"},{"authorName":"王海峰","id":"1dd824f8-c12f-4d0f-84dd-e7374c922cc4","originalAuthorName":"王海峰"},{"authorName":"蔡宁","id":"f9aeebe2-ee6d-458e-a921-daeba8a25f82","originalAuthorName":"蔡宁"},{"authorName":"南策文","id":"b29a97db-972c-4da0-bb81-3355cde8b92d","originalAuthorName":"南策文"}],"doi":"10.3321/j.issn:1000-324X.2003.03.026","fpage":"673","id":"3e66a09f-6618-4cc2-9e60-960735e7cd26","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"40768f7f-093e-474a-87f3-12162e4afe5d","keyword":"机械化学法","originalKeyword":"机械化学法"},{"id":"8c17770f-dc14-4b38-9c88-57b27963720c","keyword":"纳米ZnO","originalKeyword":"纳米ZnO"},{"id":"f6a40eee-ffff-428b-b6e6-2d3fa018f414","keyword":"光吸收","originalKeyword":"光吸收"}],"language":"zh","publisherId":"wjclxb200303026","title":"机械化学法合成纳米ZnO粉体","volume":"18","year":"2003"},{"abstractinfo":"以ZrOCl2·8H2O和NaOH为原料,采用机械化学法制备ZrO2纳米粉体.研究了前驱体不同处理方法对粒径的影响.采用X射线衍射仪、激光粒度分析仪、比表面积仪、扫描电镜、透射电镜对粉体进行表征.结果表明前驱体经500℃煅烧后出现t-ZrO2,且随温度升高,晶粒尺寸逐渐增大,晶型逐渐完整.采用机械化学法可制备分散均匀、粒径为10 nm的ZrO2粉体,其最佳处理工艺条件是先将前驱体500℃煅烧后再将NaCl洗去.","authors":[{"authorName":"石连水","id":"9e7f4bef-3af4-4f7c-96ee-0974af8a5557","originalAuthorName":"石连水"},{"authorName":"张林","id":"6a79e505-13e3-4ee8-9eb5-84550026d4c2","originalAuthorName":"张林"},{"authorName":"陈萍华","id":"cdc55655-9c18-4325-9b0e-25a65dfd57c6","originalAuthorName":"陈萍华"},{"authorName":"周雪珍","id":"4baf7b5b-ebb7-4ee8-997f-f65a986b9271","originalAuthorName":"周雪珍"},{"authorName":"赵夫健","id":"f8de41da-6963-4605-8b88-d82b4dd7b8aa","originalAuthorName":"赵夫健"},{"authorName":"李永绣","id":"5bc8baf6-4b79-4e0c-b55c-957cefce587f","originalAuthorName":"李永绣"}],"doi":"","fpage":"1443","id":"fb9ea718-1093-47b7-b07c-8173d22810c1","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f5ad96f4-cc99-4936-b548-b6084b914e86","keyword":"氧化锆","originalKeyword":"氧化锆"},{"id":"d38f08f7-956a-4d97-83f6-320ca3952541","keyword":"机械化学法","originalKeyword":"机械化学法"},{"id":"a2c4331a-a588-495f-a537-2bb4ba466b94","keyword":"纳米粉体","originalKeyword":"纳米粉体"}],"language":"zh","publisherId":"gsytb201406031","title":"机械化学法制备ZrO2纳米粉体的工艺研究","volume":"33","year":"2014"},{"abstractinfo":"采用湿固相机械化学法对氧化铈粉体进行改性处理,考察了改性剂的反应率,机械化学反应时间、煅烧温度、添加剂用量等条件与超细氧化铈粉体的粒度、密度、悬浮性及硬度之间的关系,分析测定了物相和外观形貌.制备了复合超细氧化铈粉体,使常态下基本不发生化学反应的改性剂与被改性的粉体颗粒进行了良好的结合,从而改善了超细氧化铈的性能.","authors":[{"authorName":"辜子英","id":"658cc4bf-8eae-472e-9975-d66e87d8ea7d","originalAuthorName":"辜子英"},{"authorName":"李永绣","id":"d7fef8a5-6328-443f-998d-eb0ebfdc71e0","originalAuthorName":"李永绣"},{"authorName":"胡平贵","id":"7a30be1e-2b28-4aad-960a-4d3332a55e97","originalAuthorName":"胡平贵"},{"authorName":"彭德院","id":"23c5f53a-19c0-432c-b846-20bd6802f52c","originalAuthorName":"彭德院"},{"authorName":"焦小燕","id":"498d10c4-1f61-48ef-8f23-0866d3cc8f7a","originalAuthorName":"焦小燕"}],"doi":"10.3969/j.issn.1004-0277.2005.03.004","fpage":"14","id":"af884f75-95ea-4c91-8d1a-863b68c91aff","issue":"3","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"b6474bbd-9d77-447e-b67c-c611129f9291","keyword":"超细氧化铈","originalKeyword":"超细氧化铈"},{"id":"0af2d7aa-1725-4a0b-8414-caa57a162262","keyword":"机械化学反应","originalKeyword":"机械化学反应"},{"id":"90b913e4-0115-443f-9f96-1b0d6fda6416","keyword":"合成","originalKeyword":"合成"}],"language":"zh","publisherId":"xitu200503004","title":"湿固相机械化学反应法改性制备复合超细氧化铈","volume":"26","year":"2005"},{"abstractinfo":"采用中试试验台的水平滚动式球磨机,对高浓度多氯联苯(PCBs)污染土壤进行机械化学法处置.以氧化钙(CaO)为主要添加剂成分,对比有无石英砂(SiO2)助剂,混合球磨PCBs污染土壤.使用高分辨气相色谱/质谱联用仪(HRGC/MS)检测,分析球磨机械化学反应前后土壤中PCBs的去除率和二(嗯)英(PCDD/Fs)的合成率.结果表明,采用水平滚动式球磨机对土壤进行20 h研磨后,对于单一CaO添加球磨工况,PCBs总量和毒性当量(WHO-TEQ)分别减少了65%和73%;添加石英砂助剂后(CaO-SiO2工况),PCBs总量和WHO-TEQ的去除率分别达到了74%和78%,证实水平滚动式低速球磨能有效降解PCBs,且SiO2有助于CaO添加剂机械化学去除土壤中PCBs.对球磨处理前后的PCDD/Fs生成量进行比较,结果表明,在反应初期的5h内,部分PCBs氧化为高氯代的PCDFs,导致PCDD/Fs总量和毒性当量(I-TEQ)有所上升;球磨超过5h后,PCDD/Fs开始发生降解反应.在保证充足的球磨反应时间条件下,机械化学处理PCBs可以克服传统PCBs热处置的首要缺陷——PCDD/Fs的二次合成问题.","authors":[{"authorName":"毛琼晶","id":"524d46dd-3f59-4931-925e-04a88f864541","originalAuthorName":"毛琼晶"},{"authorName":"陆胜勇","id":"cebb5486-72b7-4e75-8820-05dcfac5e10e","originalAuthorName":"陆胜勇"},{"authorName":"卫樱蕾","id":"a9a96b21-74ca-4d2d-bd32-a81523bcd4a4","originalAuthorName":"卫樱蕾"},{"authorName":"李晓东","id":"2f782744-91ec-4f38-a7c2-2f917b5ba064","originalAuthorName":"李晓东"},{"authorName":"严建华","id":"0da4869d-7fc0-4ba9-837d-4000d3fd61fa","originalAuthorName":"严建华"}],"doi":"10.7524/j.issn.0254-6108.2016.04.2015090101","fpage":"607","id":"f5e91f99-213a-4034-888c-0d237954fed4","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"f0a529f2-e276-4c0f-b00c-90a7981ee514","keyword":"土壤修复","originalKeyword":"土壤修复"},{"id":"e94dd4d5-b39f-4db2-8050-6c2bc9b8002b","keyword":"机械化学","originalKeyword":"机械化学"},{"id":"4160eeb9-2e5e-4f43-ac07-86132022bfaf","keyword":"多氯联苯","originalKeyword":"多氯联苯"},{"id":"592da592-8cfa-4b2c-bac3-3fe73d6074b3","keyword":"氧化钙","originalKeyword":"氧化钙"},{"id":"a1e76983-90ea-403c-bd17-80db206cfc7a","keyword":"石英","originalKeyword":"石英"},{"id":"be0c9dc3-5103-4a37-b0e5-33c214afb92d","keyword":"二(嗯)英","originalKeyword":"二(嗯)英"}],"language":"zh","publisherId":"hjhx201604001","title":"水平球磨机械化学法处置多氯联苯污染土壤的试验","volume":"35","year":"2016"},{"abstractinfo":"铁酸盐是一种重要的功能材料.本文介绍了纳米铁酸盐性质、应用及合成方法的特点.着重论述了机械化学法合成铁酸盐纳米晶的机制,并展望了该领域的发展趋势.","authors":[{"authorName":"杨华明","id":"8118d905-1f85-4e6f-b2d4-16fd5a4c3d24","originalAuthorName":"杨华明"},{"authorName":"张向超","id":"e2d449ad-284b-4012-90ff-19fee488304d","originalAuthorName":"张向超"},{"authorName":"敖伟琴","id":"16966150-420c-4640-a1ef-80e82cc71003","originalAuthorName":"敖伟琴"},{"authorName":"唐爱东","id":"200d806d-2137-4473-b03d-bf070536fcdf","originalAuthorName":"唐爱东"},{"authorName":"邱冠周","id":"2e29cf05-1aa0-4766-857d-ceefc442002c","originalAuthorName":"邱冠周"}],"doi":"10.3969/j.issn.1673-2812.2003.04.036","fpage":"607","id":"a3969dd5-7e2e-49fe-8ac3-a244bca2889c","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1aad27be-eba2-46c3-a765-14b61a59b2b3","keyword":"机械化学","originalKeyword":"机械化学"},{"id":"4b350d03-7824-4c6a-aeb0-50930e725717","keyword":"铁酸盐纳米晶","originalKeyword":"铁酸盐纳米晶"},{"id":"82ffa829-cfca-4f30-94fc-9fcaf2c365fd","keyword":"合成机理","originalKeyword":"合成机理"}],"language":"zh","publisherId":"clkxygc200304036","title":"机械化学合成铁酸盐纳米晶的新进展","volume":"21","year":"2003"},{"abstractinfo":"以含氢硅油为改性剂,用机械化学法对SiO2粉体进行表面改性,通过测定接触角和TG、IR、TEM等手段表征改性效果,讨论了改性剂用量、改性时间、磨机转速、球料比等因素对改性效果的影响.结果表明:机械化学法可以将含氢硅油负载到SiO2表面,负载机制包括化学吸附和物理吸附;改性剂用量50%、改性时间3 h、磨机转速300 r·min-1、球料比20条件下改性后SiO2的时接触角可达150.58°,改性后的SiO2粉体颗粒呈现较好的分散性.","authors":[{"authorName":"李亚","id":"8aa2a9b0-fb1b-4f16-a48e-a8ad1899006e","originalAuthorName":"李亚"},{"authorName":"陈洪龄","id":"1b3b4792-ccb3-4d3c-8a1e-015f91412f24","originalAuthorName":"陈洪龄"}],"doi":"10.3969/j.issn.1000-3738.2008.01.022","fpage":"76","id":"d85b1f47-fba4-4533-b83e-9648cfc0e971","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6fd0cf35-ce01-4966-ba2b-229ec50ec541","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"f8585771-2652-40d4-99fb-065bd5936bd9","keyword":"含氢硅油","originalKeyword":"含氢硅油"},{"id":"a1e928f1-a247-4d21-94ee-1e5b1d57fe10","keyword":"机械化学法","originalKeyword":"机械化学法"},{"id":"52ff7c32-12c4-4921-a6dc-747e0439180b","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"jxgccl200801022","title":"用含氢硅油机械化学法改性SiO2粉体","volume":"32","year":"2008"},{"abstractinfo":"以工业上常见的水合草酸钇和氨水为原料,采用湿固相机械化学法制备了D50<0.5 μm,D90<1 μm的窄分布超细氧化钇,研究了在球磨和煅烧过程中对氧化钇粒度的影响因素,通过粉末X射线衍射(XRD)、同步热分析(TG-DSC)和傅立叶变换红外光谱(FTIR)考察了球磨过程中的机械化学反应与物相转变,以及前驱体的热分解过程.","authors":[{"authorName":"高海炼","id":"6aee2d5b-a603-4639-9139-6301bfef81e2","originalAuthorName":"高海炼"},{"authorName":"陈伟凡","id":"b91adfd4-6c54-467f-aeb9-eb98eb521d5a","originalAuthorName":"陈伟凡"},{"authorName":"李凤生","id":"df2dd3bc-9bf9-4eaf-b8df-4a37998dc4e1","originalAuthorName":"李凤生"},{"authorName":"刘洋","id":"4cc4da0c-d2db-40c7-b92a-58ce49fd19fa","originalAuthorName":"刘洋"},{"authorName":"于吉义","id":"712322f0-c7b3-45fb-b94c-1cd2d8294b47","originalAuthorName":"于吉义"},{"authorName":"邓国栋","id":"a808edce-660e-4bed-ab72-a2161866040f","originalAuthorName":"邓国栋"}],"doi":"10.3969/j.issn.0258-7076.2006.06.016","fpage":"795","id":"10ca0e71-4b54-42fe-8e37-5a324b57a93a","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"8a259114-5f74-4ba3-9e61-b4205a66dc3d","keyword":"超细氧化钇","originalKeyword":"超细氧化钇"},{"id":"ecdafc0e-c1e5-44f8-a338-c83112bb376e","keyword":"行星磨","originalKeyword":"行星磨"},{"id":"276bf144-88f9-4955-a18c-954f085f3625","keyword":"湿固相","originalKeyword":"湿固相"},{"id":"06a4bfae-2846-4e60-aa0e-4e3a26aa7482","keyword":"机械化学反应","originalKeyword":"机械化学反应"},{"id":"ef5ed918-400e-4979-9832-a6f970cccf0c","keyword":"水合草酸钇","originalKeyword":"水合草酸钇"},{"id":"a966f510-677f-4381-b986-3785007887e6","keyword":"氨水","originalKeyword":"氨水"}],"language":"zh","publisherId":"xyjs200606016","title":"湿固相机械化学法制备超细氧化钇的研究","volume":"30","year":"2006"}],"totalpage":5937,"totalrecord":59368}