{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用电化学测量技术、静态和动态浸泡试验研究了3Cr钢在3.5% NaCl溶液中的腐蚀行为,从而为3Cr钢在Cl-腐蚀环境中的使用提供参考.结果表明:3Cr钢在动态腐蚀条件下比静态腐蚀时具有较正的开路电位、较高的电化学腐蚀速率和低的电化学阻抗;长期静态浸泡后,动态腐蚀加速了3Cr钢的腐蚀,点蚀更为严重;在25~80℃内,动态腐蚀速率在60℃时为最大值.","authors":[{"authorName":"秋兴利","id":"a566cb86-377d-4a50-94ce-3fb444fdb0be","originalAuthorName":"秋兴利"},{"authorName":"薛玉娜","id":"5196493c-fe9f-4abd-8739-6bd2904bd4f4","originalAuthorName":"薛玉娜"},{"authorName":"王荣","id":"60a73b80-69d4-4707-b0a7-8f0f8d26133c","originalAuthorName":"王荣"}],"doi":"","fpage":"12","id":"4d8885d0-8964-4f5f-8ff8-a22b719faa54","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"03e2234f-0e86-4b2e-aa2c-39d9232c7782","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"7f6bb9e7-9d40-4da1-8ce8-47fcda6a7531","keyword":"动态腐蚀","originalKeyword":"动态腐蚀"},{"id":"c2af8fae-d03a-4252-b9a4-210fb2db8118","keyword":"静态腐蚀","originalKeyword":"静态腐蚀"},{"id":"07f4b0e0-4ef5-44f1-8646-46da9c9d5243","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"daa305eb-9872-492d-8339-2cfab172dcf9","keyword":"3Cr钢","originalKeyword":"3Cr钢"},{"id":"1966a173-c5bc-4bf1-9038-ea4c69906666","keyword":"电化学测量","originalKeyword":"电化学测量"},{"id":"8eba8bed-34a3-461d-a57c-2b8c3fd48273","keyword":"浸泡","originalKeyword":"浸泡"}],"language":"zh","publisherId":"clbh201403004","title":"3Cr钢在3.5%NaCl溶液中的腐蚀行为","volume":"47","year":"2014"},{"abstractinfo":"为了进一步弄清AZ31镁合金阳极氧化膜在NaCl溶液中的腐蚀机制,采用极化曲线、电容测量技术,基于半导体电化学方法研究了其在3.5 %NaCl溶液中耐蚀性能与其半导体特性的关系,得到不同浸泡时间下的载流子浓度以及平带电位.结果表明:镁合金阳极氧化膜为N型半导体,随浸泡时间的增加,载流子浓度呈上升趋势,由浸泡10 min时的1.83×1018 cm-3增大到96 h时8.60×1020cm-3,平带电位为-1.69~-1.52V,低于镁合金(-1.44~-1.57 V),在浸泡时间为1h时膜的平带电位最负,耐蚀性最好;镁合金阳极氧化膜的腐蚀失效过程会经过自我修复期-点蚀诱导期-点蚀期-快速腐蚀期4个阶段.","authors":[{"authorName":"刘渝萍","id":"df3df980-5283-43f4-bb72-c1b431e07dd6","originalAuthorName":"刘渝萍"},{"authorName":"宋卫华","id":"134726aa-4781-4347-b58c-ad83fa4cf216","originalAuthorName":"宋卫华"},{"authorName":"陈昌国","id":"2f5c6a78-e6eb-47a3-a5d1-fdf83920b5ca","originalAuthorName":"陈昌国"},{"authorName":"尹玲","id":"bc264d5c-b005-411d-b045-ceedd5b450b9","originalAuthorName":"尹玲"},{"authorName":"郭朝中","id":"3e0f579c-bf2c-47ee-9631-6218903ff1e7","originalAuthorName":"郭朝中"}],"doi":"","fpage":"8","id":"c8a4e7a1-e390-4189-9b4c-9d8c0d9831c7","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"69a65af8-05cc-4976-b959-5385dadb1a87","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"f097c113-1042-4b7f-8449-2d22cfd05840","keyword":"AZ31镁合金","originalKeyword":"AZ31镁合金"},{"id":"ece9b680-b76b-49e5-acec-4fd85e4f7aef","keyword":"半导体","originalKeyword":"半导体"},{"id":"328ef73d-cfa3-4b48-96e0-6417d0c9108a","keyword":"电容测量技术","originalKeyword":"电容测量技术"},{"id":"1b7e6049-1440-4825-bb6e-5e6fec1d9f1f","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"617a6b65-d3f7-4c68-b5af-61aae8bed77e","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"76601147-3766-4965-a14e-0514b36c79f5","keyword":"腐蚀机制","originalKeyword":"腐蚀机制"}],"language":"zh","publisherId":"clbh201301003","title":"AZ31镁合金阳极氧化膜在3.5%NaCl溶液中不同浸泡时间的腐蚀机制","volume":"46","year":"2013"},{"abstractinfo":"低合金钢在含CO2的NaCl溶液中的腐蚀行为受温度影响很大。利用动电位极化和电化学阻抗(EIS)技术研究了CO2饱和的NaCl溶液中温度对3Cr低合金钢腐蚀过程的影响。结果表明:温度的升高促进了腐蚀过程的阴阳极反应,合金钢的腐蚀速率增大;随着温度的升高,阳极塔菲尔斜率逐渐减小,阴极塔菲尔斜率逐渐增大,电极表面的阳极区面积逐渐增大,而阴极区面积逐渐减小;温度升高对阴极过程的促进作用大于阳极过程,使Ecorr发生正向移动;温度升高提高了合金钢的腐蚀速率,但极化曲线形状基本相同,即腐蚀机理未发生变化;舍金钢在CO2饱和的0.5mol/LNaCl溶液中的电化学阻抗谱均出现2个时间常数,高频和中频段出现由双电层界面电容和电荷转移电阻引起的容抗弧,低频段出现与钝化膜相关的容抗弧,但都随着温度的升高而减小。","authors":[{"authorName":"贾志军","id":"14f703aa-6e1d-4b54-b0e0-aa7f458ac5ce","originalAuthorName":"贾志军"},{"authorName":"张新","id":"afc1d20d-6ba4-426d-84f0-3aefdeab46ea","originalAuthorName":"张新"},{"authorName":"杜翠薇","id":"e087a2b6-378c-4517-a3e0-8ac89b150ef9","originalAuthorName":"杜翠薇"},{"authorName":"李晓刚","id":"fc4fc16a-acf8-46d9-a2c4-3d1c2a53ead8","originalAuthorName":"李晓刚"}],"doi":"","fpage":"23","id":"b6303176-51d5-4b27-9eee-56ed7315b8ba","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ca0aee7d-966c-4f7a-9553-4b0fb8ec4340","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"32a56fcf-bd89-41c6-8ebe-39dc7bf16e9f","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"ba75bd81-d820-4fbf-b375-76b80f74198b","keyword":"3Cr低合金钢","originalKeyword":"3Cr低合金钢"},{"id":"74997009-b3a9-432b-a6f7-94e6b561bf11","keyword":"温度","originalKeyword":"温度"},{"id":"0514e06f-a1b2-484c-9297-855bb5107e92","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"2d3ca2b2-fa19-4c22-8664-56bd0aed9059","keyword":"动电位极化曲线","originalKeyword":"动电位极化曲线"},{"id":"8fcf222d-119a-48ec-830a-c3a628bf242f","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"}],"language":"zh","publisherId":"clbh201203010","title":"CO2饱和的0.5mol/L NaCl溶液中温度对3Cr低合金钢腐蚀行为的影响","volume":"45","year":"2012"},{"abstractinfo":"采用极化曲线、电化学阻抗谱等电化学方法研究了钨铝合金在不同温度、盐度及pH值的NaCl溶液中的腐蚀行为.实验结果表明:钨铝合金的腐蚀速率随盐度的增加而增加;耐腐蚀性能随温度的升高而下降;在中性NaCl溶液中最耐腐蚀,且酸性越大,腐蚀速率越快.","authors":[{"authorName":"吴茂永","id":"7be58f5e-04b8-4e94-b1cd-82c7ce29eaf5","originalAuthorName":"吴茂永"},{"authorName":"田继强","id":"29817c84-821e-4078-ad2d-ccb617fa5423","originalAuthorName":"田继强"},{"authorName":"曹立新","id":"adb4e9c4-8114-460a-b5d8-66d9fcacf0c8","originalAuthorName":"曹立新"},{"authorName":"高荣杰","id":"bd925872-e366-4db9-bb6a-0f52bf25146d","originalAuthorName":"高荣杰"},{"authorName":"苏革","id":"ca7a3d94-8f97-4fa6-935b-9dfa24ea6879","originalAuthorName":"苏革"},{"authorName":"柳伟","id":"72a3faa3-55ce-450b-bd0a-011a409cef22","originalAuthorName":"柳伟"}],"doi":"10.11903/1002.6495.2014.094","fpage":"25","id":"66c0f370-9878-4e52-b1fb-46034bae545b","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"b0239085-6161-4eb9-97cd-7ddc13450329","keyword":"钨铝合金","originalKeyword":"钨铝合金"},{"id":"f1140de4-db62-4791-87c0-3ccc4bed4f37","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"c20f1d61-35c2-4ec2-8263-add1fb52bb82","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"aa7ebb1d-0617-47d9-9f6d-fa7eca5cf34d","keyword":"阻抗图谱","originalKeyword":"阻抗图谱"},{"id":"1a450e45-a2b0-473e-aab2-0e05dff2655b","keyword":"极化曲线","originalKeyword":"极化曲线"}],"language":"zh","publisherId":"fskxyfhjs201501005","title":"钨铝合金在不同NaCl溶液中的电化学腐蚀行为研究","volume":"27","year":"2015"},{"abstractinfo":"应用机械合金化技术,球磨得到15%Fe-Mg合金,对合金的组成、显微形貌和在NaCl溶液中的腐蚀行为进行了研究.结果表明:球磨产物中只有铁、镁的单相,而无新相生成,在NaCl溶液中,镁发生了电偶腐蚀,并放热、放氢;球磨40 min的合金能放出较多的热量和氢气,反应产物中只有极少量的镁;较低的NaCl溶液初温会减缓电偶腐蚀的速度,并最终影响放热和放氢.","authors":[{"authorName":"吴胜琴","id":"9740fdff-aa6c-4a39-acfe-715b805b0360","originalAuthorName":"吴胜琴"},{"authorName":"朱心昆","id":"35993222-7726-4f89-8387-200a36d8b239","originalAuthorName":"朱心昆"},{"authorName":"罗毅","id":"0da76030-a632-49d1-89e2-830ce6bc7eed","originalAuthorName":"罗毅"},{"authorName":"赖华","id":"6b1c45ce-89d9-48ab-81c4-46400349a2b9","originalAuthorName":"赖华"},{"authorName":"唐海林","id":"43606f28-a602-471f-9829-e2bd89c515b1","originalAuthorName":"唐海林"}],"doi":"10.3969/j.issn.1000-3738.2005.05.016","fpage":"48","id":"26d695e8-1563-4015-8714-f2a21ffb9653","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"5c7c3434-db4f-4563-98b8-669782b18ef8","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"c2af9a6d-6cdd-417b-9cf6-60a0a03ff54d","keyword":"铁-镁合金","originalKeyword":"铁-镁合金"},{"id":"35383e56-3aa8-4d9c-8c2b-2b76550b1dc8","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"2c53bb89-dd38-46f5-912c-a08c671c6adf","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"jxgccl200505016","title":"机械合金化制备的铁-镁合金在NaCl溶液中的腐蚀行为","volume":"29","year":"2005"},{"abstractinfo":"钢芯铝绞线正常运行温度达80℃,受到环境中盐离子的严重腐蚀。采用Tafel直线外推法、电化学阻抗谱法及加速腐蚀试验法,研究了钢芯铝绞线的铝线在不同浓度NaCl溶液中的腐蚀行为,利用SEM和XRD等表征了其腐蚀表面状态及产物形貌。结果表明:随着NaCl浓度的升高,铝线的自腐蚀电位负移,极化电阻变小,腐蚀速率增大,当NaCl为70mg/L时腐蚀速率急剧增加,是10mg/L NaCl时的40倍;腐蚀产物及钢芯表面镀锌层可抑制铝线的腐蚀,铝线腐蚀后的表面出现大量的“麻点”及腐蚀坑,白色的腐蚀产物主要由Zn0.64Al0.36(OH)2(CO3)0.18·0.86H2O组成。","authors":[{"authorName":"宗庆彬","id":"2b590ede-648c-4840-b7a3-caa631317f75","originalAuthorName":"宗庆彬"},{"authorName":"黎学明","id":"80bb6058-dc64-4793-9c8f-8e822db4f233","originalAuthorName":"黎学明"},{"authorName":"杨萍","id":"05eb8acd-6626-430f-aa0c-4b77aa85e71b","originalAuthorName":"杨萍"},{"authorName":"李勇","id":"99244fc9-d2ad-4847-b900-8d6cb57c13b6","originalAuthorName":"李勇"},{"authorName":"吴高林","id":"7580914b-b0fe-49e3-bf05-9ac8ba0317e7","originalAuthorName":"吴高林"},{"authorName":"邓帮飞","id":"1cdfc070-6981-4fa1-865a-02456cc0ecc5","originalAuthorName":"邓帮飞"}],"doi":"","fpage":"33","id":"8c7adc4e-3dec-45cb-a6a5-6b3679707623","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"26e2c760-98cd-4e2b-9500-3b961cf68558","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"3f20faf5-0127-4de3-b379-a7d814bd0d91","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"d92e4fba-5c08-4fb4-bcdc-0efbdd54c2b1","keyword":"钢芯铝绞线","originalKeyword":"钢芯铝绞线"},{"id":"5317bf1d-a58d-4d13-a7ca-6298919a5fc8","keyword":"铝线","originalKeyword":"铝线"}],"language":"zh","publisherId":"clbh201203014","title":"钢芯铝绞线的铝线在NaCl溶液中的腐蚀行为","volume":"45","year":"2012"},{"abstractinfo":"为了探讨AZ91D镁合金微弧氧化膜在NaCl溶液中的腐蚀过程、腐蚀特征和失效机理,测定了其在3.5%NaCl溶液中浸泡不同时间的动电位极化曲线,结合扫描电子显微镜(SEM)、X射线衍射仪(XRD)分析了腐蚀产物的形貌和相结构,建立了腐蚀模型.结果表明:腐蚀初期,微弧氧化膜对AZ91D镁合金的保护近似于机械阻挡作用;腐蚀中期,腐蚀产物和氧化膜的复合阻挡作用对基体的防护作用有改进;腐蚀后期,微裂缝横向、纵向逐步扩展,膜被“切断”成小颗粒并脱落,对基体逐渐失去保护作用.","authors":[{"authorName":"郭惠霞","id":"704f4b28-aa45-49d8-b61c-8c61ff70cd1f","originalAuthorName":"郭惠霞"},{"authorName":"马颖","id":"4641b8f3-efb9-460c-9751-850a53303725","originalAuthorName":"马颖"},{"authorName":"张玉福","id":"76de9855-b112-440d-8b21-466e21239e68","originalAuthorName":"张玉福"},{"authorName":"董海荣","id":"51729550-f610-42cf-bfad-fdb32f54de96","originalAuthorName":"董海荣"},{"authorName":"郝远","id":"0fdde3d1-85b9-4729-8370-4817013a5723","originalAuthorName":"郝远"}],"doi":"","fpage":"17","id":"102d201c-9bcf-4d8b-b2c4-764fd952fbc3","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"315027ab-0037-43dd-858f-a1f6b78c64ab","keyword":"微弧氧化膜","originalKeyword":"微弧氧化膜"},{"id":"8ef93ed7-75f3-475f-8f3d-4cd836ffde45","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"1a1c7633-c6ac-427b-a02e-ad87a514efb3","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"7ac0bc52-314d-4a08-8340-462d4d6cb469","keyword":"腐蚀过程","originalKeyword":"腐蚀过程"},{"id":"43a78692-c4b6-47bf-a0f2-5e4b6ecf1967","keyword":"腐蚀模型","originalKeyword":"腐蚀模型"}],"language":"zh","publisherId":"clbh201309006","title":"镁合金微弧氧化膜在NaCl溶液中的腐蚀过程","volume":"46","year":"2013"},{"abstractinfo":"本文搭建了静态闪蒸实验台,对不同初始参数下NaCl溶液静态闪蒸过程中的泡沫层膨胀规律开展了初步地实验研究和理论分析.实验中,过热度为2.9~30 K,初始液膜厚度为0.1m、0.2 m,溶液初始质量分数为0.2~0.25.实验结果表明:在较大的过热度或者较小的初始液膜厚底下,泡沫层膨胀开始较早,且膨胀较快;而溶液浓度对泡沫层膨胀规律几乎没有影响.此外,本文根据气泡生长理论和质量能量平衡建立并推导出了泡沫层膨胀规律计算模型,实现了对泡沫层高度随时间变化规律的计算,与实验结果吻合得较好.","authors":[{"authorName":"赵凯","id":"bcc08a4f-4a99-45af-ab2a-81071b2fe30a","originalAuthorName":"赵凯"},{"authorName":"张丹","id":"6da6b2a5-1364-4fe7-91d7-b3924032010f","originalAuthorName":"张丹"},{"authorName":"于龙文","id":"f680d447-a9a5-48f4-bffa-46aa77834597","originalAuthorName":"于龙文"},{"authorName":"赵冰超","id":"ded36cc7-dbb1-4062-b69f-cc847b2e0e57","originalAuthorName":"赵冰超"},{"authorName":"严俊杰","id":"0c116ba6-e87f-4274-ae46-2a170b67e97a","originalAuthorName":"严俊杰"}],"doi":"","fpage":"2656","id":"0612e72d-c0d1-4989-8073-3c9ba99e1711","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5c9ed7b8-779f-4a12-b828-f310d187b8ea","keyword":"静态闪蒸","originalKeyword":"静态闪蒸"},{"id":"a10c4c47-ece4-4dc5-8487-debcbbe1148b","keyword":"泡沫状沸腾","originalKeyword":"泡沫状沸腾"},{"id":"a5271535-ced7-4683-8137-703fcda4b90d","keyword":"泡沫层膨胀","originalKeyword":"泡沫层膨胀"},{"id":"97a5bd03-ebe3-41a7-a5e8-6a688f32d1ca","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"}],"language":"zh","publisherId":"gcrwlxb201512025","title":"NaCl溶液静态闪蒸泡沫层膨胀规律的实验研究","volume":"36","year":"2015"},{"abstractinfo":"研究了铜碲锂多元合金中碲对合金耐腐蚀性的影响.经过25℃在3.5%NaCl溶液中的全浸试验表明铜碲锂多元合金比纯铜具有更好的耐蚀性.利用扫描电镜观察腐蚀试样的表面形貌,发现表面不均匀的覆盖着一层多孔的腐蚀产物.经X射线衍射仪分析确定,该腐蚀产物为Cu2(OH)3Cl和Cu2O的混合物.","authors":[{"authorName":"宋明昭","id":"29301cff-0a5d-48a2-97e6-3fc8703ddaf1","originalAuthorName":"宋明昭"},{"authorName":"朱达川","id":"842cc9d9-eddc-4a09-9710-46da02a9f537","originalAuthorName":"朱达川"},{"authorName":"涂铭旌","id":"3671eceb-9d7a-4492-9461-d5103915fab2","originalAuthorName":"涂铭旌"}],"doi":"","fpage":"209","id":"ed3180f9-b10b-4b28-86a5-c90e6d6dc3e5","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f1c56e82-67d6-4a64-976b-85ecb510cc07","keyword":"铜碲锂合金","originalKeyword":"铜碲锂合金"},{"id":"aa008b8b-b8f0-4ca7-a6d2-34a2096dab5a","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"a4afbae3-d0da-4b4f-8e9c-1128ef4b1491","keyword":"耐腐蚀性能","originalKeyword":"耐腐蚀性能"},{"id":"5e6a3f36-a898-4845-9428-57d53d5d186f","keyword":"Cu2(OH)3Cl","originalKeyword":"Cu2(OH)3Cl"}],"language":"zh","publisherId":"gncl200502015","title":"铜碲锂多元合金在3.5%NaCl溶液中腐蚀行为的研究","volume":"36","year":"2005"},{"abstractinfo":"采用化学浸泡实验和电化学测试技术,探讨了Ni元素对304不锈钢在0.3%NaCl溶液中缝隙腐蚀行为的影响.结果表明,合金元素Ni的加入,可提高ER,抑制不锈钢的活性溶解行为和有效提高抗缝隙腐蚀能力.通过AES和XPS分析表面膜发现,Ni元素在不锈钢表层和基体过渡区富集,并以NiO的形式参与成膜过程.Cr和Ni的协同效应,改变了不锈钢表面电化学行为,提高了膜的稳定性.","authors":[{"authorName":"梁成浩","id":"be53a975-0fb2-4de5-816c-6d90e10ec2fd","originalAuthorName":"梁成浩"}],"doi":"10.3969/j.issn.1002-6495.1999.03.004","fpage":"147","id":"920ef28b-c621-4754-8052-e0c8c20ddc7d","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"12a7d250-615a-47a5-9f32-3a0a534d3add","keyword":"镍","originalKeyword":"镍"},{"id":"0af0d050-32ba-45d1-b4ee-71f6b12059fa","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"51e5fb00-ace7-46be-b662-fd2c272e551f","keyword":"NaCl溶液","originalKeyword":"NaCl溶液"},{"id":"c1db16cd-c336-4403-ae7b-9682a97f816c","keyword":"缝隙腐蚀","originalKeyword":"缝隙腐蚀"}],"language":"zh","publisherId":"fskxyfhjs199903004","title":"镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响","volume":"20","year":"1999"}],"totalpage":1890,"totalrecord":18900}