{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"核态沸腾中位于汽泡底部的在热量传递的过程里起到了至关重要的作用.本文用激光干涉法结合高速摄影技术清晰地记录了沸腾汽泡生长过程中干涉图样的变化过程,分析了干区出现后三相接触线的变化规律,从实验中发现干区半径随时间的变化呈现出良好的线性趋势.本文对干区出现前后汽泡基圆半径的变化规律进行了分析,在干区出现之前汽泡基圆半径随时间迅速增加,在干区出现之后,基圆半径的变化趋势趋于平缓.本文通过积分法计算了汽泡成长过程中体积的变化规律,体积呈现出先增大后减小的变化趋势.","authors":[{"authorName":"高明","id":"e9f583bd-23de-4780-8585-1184c97492d1","originalAuthorName":"高明"},{"authorName":"章立新","id":"5245a94d-1f43-4a49-977f-68d5eefb6250","originalAuthorName":"章立新"},{"authorName":"郑平","id":"688fee52-116a-4416-b83b-fd0f5e42139d","originalAuthorName":"郑平"},{"authorName":"全晓军","id":"c1ee4093-a5e0-4f98-a809-1a1af0dcbbc3","originalAuthorName":"全晓军"}],"doi":"","fpage":"931","id":"9f7be629-0bdd-4fb2-bf07-040ee519a286","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1b7cf5c3-ceaa-4aab-a3f6-49b86428110a","keyword":"","originalKeyword":"微液层"},{"id":"7120ebd6-0804-4584-b685-f4921fa68f71","keyword":"激光干涉","originalKeyword":"激光干涉"},{"id":"d3c03554-5c95-441c-876e-8a918b41ab52","keyword":"汽泡动力学","originalKeyword":"汽泡动力学"}],"language":"zh","publisherId":"gcrwlxb201305031","title":"沸腾汽泡变化规律的实验研究","volume":"34","year":"2013"},{"abstractinfo":"研究了在Na2SiO3系电解中电解质浓度和添加剂浓度对铝合金弧氧化膜厚度和硬度的影响.结果表明:在本工艺条件下,膜厚度随着电解质浓度的升高而增加,但硬度是先增加后减小;加入添加剂以后,膜的厚度、硬度及手感细腻程度和均匀性都有明显提高.","authors":[{"authorName":"徐俊","id":"46bd7ea5-9fba-4ed0-85fb-3ebffef8833b","originalAuthorName":"徐俊"},{"authorName":"胡正前","id":"3b0c5dfa-7170-4989-8bf1-5e5219d9a1cd","originalAuthorName":"胡正前"},{"authorName":"马晋","id":"69830e99-3b26-470f-867a-51c6d1fc3bfb","originalAuthorName":"马晋"},{"authorName":"杜广建","id":"11514e2f-35fb-4830-9b1c-6d10400c4a77","originalAuthorName":"杜广建"}],"doi":"10.3969/j.issn.1004-227X.2006.10.013","fpage":"43","id":"2ed593c5-60af-46dd-bd5a-caa0ebe6e6e5","issue":"10","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"f832123d-a012-49d0-ab00-94e642be1880","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"b47c1a86-9911-46ef-84c5-89815704b925","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"aa664e0a-7896-4790-9af6-964aec5cad0d","keyword":"氧化膜","originalKeyword":"氧化膜"},{"id":"e3fbd01d-0d21-435d-8d80-615bc31a8be8","keyword":"电解","originalKeyword":"电解液"}],"language":"zh","publisherId":"ddyts200610013","title":"电解参数对铝合金弧氧化膜质量的影响","volume":"25","year":"2006"},{"abstractinfo":"本文利用模型对过冷沸腾的临界热流密度(CHF)进行了理论预测.过冷沸腾的强化换热主要是通过单个气泡的形成和消失造成的对流换热强化而引起的.对等热流面,CHF在高过冷区趋近于常数;对等温面,CHF随过冷度的增加而增加.过冷度增加时,蒸发换热量减少,总热流密度主要由蒸发区外的导热引起.","authors":[{"authorName":"赵耀华","id":"80bdf1e2-ab3f-4634-babf-2a3611a8db37","originalAuthorName":"赵耀华"},{"authorName":"姬朝玥","id":"3a5839e9-c5ac-44d6-92ee-cdd08a986b3f","originalAuthorName":"姬朝玥"}],"doi":"","fpage":"467","id":"02d02ead-d4ef-4eeb-935e-1f3a0c5254c7","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4b7c3455-ef7d-44d1-9a90-309dd7b2641c","keyword":"临界热流密度","originalKeyword":"临界热流密度"},{"id":"a32ead6e-602e-481d-89c7-674ec238a833","keyword":"过冷沸腾","originalKeyword":"过冷沸腾"},{"id":"66487d0c-60f5-4e7a-a938-95b64fe1a8cc","keyword":"池内沸腾","originalKeyword":"池内沸腾"},{"id":"8c8132c8-1990-4c9d-b398-d04c3b9114c6","keyword":"模型","originalKeyword":"微液层模型"}],"language":"zh","publisherId":"gcrwlxb200204020","title":"模型预测过冷沸腾的临界热流密度","volume":"23","year":"2002"},{"abstractinfo":"采用间接超声搅拌方式电化学沉积生长了棱镜反光材料工作模。研究了间接超声电沉积带来的温升原因,以及温升和空化综合作用对工作模反光性能的影响。采用 X 射线衍射对电沉积镍的结构进行分析,逆反射标志测量仪测量了镍铸的表面反光系数,并采用3D 激光电子扫描显微镜观测了镍铸的表面形貌和棱侧面粗糙度。结果表明,在间接超声作用下,随着时间的增加,电解温度单调增加,工作模侧面粗糙度和反光系数呈现折线变化。低频时,超声空化起主要作用;高频时,超声温升起主要作用。在70 kW/m2和40 kHz 时,工作模的粗糙度最低,反光系数最高。","authors":[{"authorName":"杨光","id":"12047039-f5a8-49df-8028-2b0d329734b3","originalAuthorName":"杨光"},{"authorName":"叶飞","id":"aadd7866-a4f5-4d82-9124-180de4daa507","originalAuthorName":"叶飞"}],"doi":"10.3969/j.issn.1001-9731.2014.18.030","fpage":"18139","id":"3f874925-ce05-4fd2-a3f6-ad141ce4d192","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2ff1401a-52ea-4187-a217-2cbeb07fa341","keyword":"棱镜镍","originalKeyword":"微棱镜镍层"},{"id":"f92843ab-2e71-46fe-8cc8-dc96e2f372cd","keyword":"间接超声电沉积","originalKeyword":"间接超声电沉积"},{"id":"0028b64a-136c-4cb9-9a3d-88d1701ccf14","keyword":"温升","originalKeyword":"温升"},{"id":"4c5bc6c0-28d0-4394-81cc-66ae1402bd80","keyword":"空化","originalKeyword":"空化"},{"id":"aa1a2c47-ee43-4e53-b992-889d7f3b951e","keyword":"反光系数","originalKeyword":"反光系数"}],"language":"zh","publisherId":"gncl201418030","title":"间接超声下电解温升及棱镜镍反光性能?","volume":"","year":"2014"},{"abstractinfo":"在电解中加入(NaPO3)6并在镁合金表面制备弧氧化,研究(NaPO3)6浓度对镁合金弧氧化的影响.结果显示,弧氧化中含有MgO、Mg2SiO4、Mg3(PO4)2等物质;随(NaPO3)6浓度增加,弧氧化厚度增加,表面微孔孔径变大,当(NaPO3)6浓度达到7 g/L时,弧氧化截面出现较明显的裂纹;弧氧化处理后的镁合金的耐蚀性明显高于基体的.当(NaPO3)6浓度为5gg/L时其耐蚀性最佳:镁合金基体溶血率为72.3%,在不同浓度(NaPO3)6下弧氧化处理的镁合金溶血率均在1%~2.5%之间,溶血作用消除.","authors":[{"authorName":"姚力夫","id":"d845937d-6b26-4831-a4c3-9a343e991bb8","originalAuthorName":"姚力夫"},{"authorName":"陈涛","id":"88e1c54e-a716-4a74-9673-ea26ae0d509e","originalAuthorName":"陈涛"},{"authorName":"徐颖","id":"b10abc17-116e-4bf3-8b60-569fe14871e9","originalAuthorName":"徐颖"},{"authorName":"台运东","id":"68962c64-ab8a-4aa8-a8bc-9b1813b1bb57","originalAuthorName":"台运东"},{"authorName":"景凤娟","id":"580ea6ae-57ea-488b-b05a-15f66bd9ab09","originalAuthorName":"景凤娟"},{"authorName":"冷永祥","id":"dd882d5c-704d-4873-9091-d281c55d0762","originalAuthorName":"冷永祥"},{"authorName":"黄楠","id":"a09ba2f5-f676-47cd-a6ca-b9519ed0bb6c","originalAuthorName":"黄楠"}],"doi":"10.11903/1002.6495.2015.028","fpage":"39","id":"451f1be1-4623-45e4-bf3c-efad734938c5","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"77f9bb82-5e02-498d-8015-fdd7bc412c9e","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"d52eddd1-f780-4c5c-9e64-27f35cf0b423","keyword":"(NaPO3)6","originalKeyword":"(NaPO3)6"},{"id":"a891c2ba-6a66-49cb-bd73-35e2de731e5c","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"95c7dc5c-880a-4290-a006-04092a617077","keyword":"溶血率","originalKeyword":"溶血率"}],"language":"zh","publisherId":"fskxyfhjs201601006","title":"电解浓度对镁合金弧氧化耐蚀性与溶血率的影响","volume":"28","year":"2016"},{"abstractinfo":"在硅酸盐碱性电解中加入稀土Ce和Y的络合物[RECit],利用弧氧化技术在AZ91D镁合金表面制备了陶瓷,研究了稀土在陶瓷中的分布,稀土对陶瓷厚度、孔隙率、表面形貌、陶瓷相组成以及耐磨和耐蚀性能的影响.研究结果表明,以络合物形式加入到电解中的稀土可以进入镁合金弧氧化陶瓷,能使陶瓷变得致密,孔隙率减小、MgO与Mg2SiO4的比例提高,表面更加光滑,但使陶瓷的厚度减小.电解中稀土元素的加入,对改善镁合金弧氧化陶瓷的耐磨及耐蚀性能有明显作用,稀土络合物的适宜加入量约为0.0035 mol/L.","authors":[{"authorName":"郭锋","id":"5a7863be-23d3-43a5-a04a-3a7e5ff7178e","originalAuthorName":"郭锋"},{"authorName":"刘瑞霞","id":"57cacad1-16ef-45ae-aea2-4d40cea65e19","originalAuthorName":"刘瑞霞"},{"authorName":"李鹏飞","id":"1a76a3f6-bfa0-4f32-93b1-c3082c3cbfcb","originalAuthorName":"李鹏飞"},{"authorName":"刘亮","id":"7a0766fa-d7a7-45b3-bf1b-e401c630bbe9","originalAuthorName":"刘亮"}],"doi":"","fpage":"134","id":"2112cb9a-960b-4802-ab91-1c887d2e0e21","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6ff962a7-301d-4e7e-a8a3-577884b2b705","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"fd41f3df-36f0-4b27-aa2b-844c60a67e6b","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"cb80a852-211b-4d6d-955c-7c14e87b976f","keyword":"稀土","originalKeyword":"稀土"},{"id":"31c66320-f20d-4599-a2f6-7b5f2e023477","keyword":"陶瓷","originalKeyword":"陶瓷层"}],"language":"zh","publisherId":"jsrclxb201102026","title":"电解中的稀土对AZ91D镁合金弧氧化陶瓷的影响","volume":"32","year":"2011"},{"abstractinfo":"研究了弧氧化过程中不同电源脉冲频率下制备的膜在仿生中的电化学腐蚀行为.对膜及腐蚀产物的微观组织,孔隙率,腐蚀形貌及相组成进行了分析.采用动电位极化曲线(Tafl)和电化学阻抗谱(EIS)法对膜的耐腐蚀性能进行评价.结果表明,脉冲频率对AZ31镁合金弧氧化膜的耐蚀性有重要影响,随着频率的增加,腐蚀电流密度减小,而电化学阻抗增大.因此在本研究范围内,频率3000 Hz下制备的弧氧化膜具有最强的耐腐蚀性能.","authors":[{"authorName":"顾艳红","id":"ecc90426-b5b3-4651-a4b9-738893b45661","originalAuthorName":"顾艳红"},{"authorName":"宁成云","id":"083ed5c8-349c-4372-9051-07ef59f48980","originalAuthorName":"宁成云"},{"authorName":"余遵雄","id":"b57e198e-3682-4868-923e-bcedf81bfe7e","originalAuthorName":"余遵雄"},{"authorName":"李红龙","id":"397c1910-08f9-477f-a596-a22774104950","originalAuthorName":"李红龙"},{"authorName":"熊文名","id":"eda85bfb-d571-406b-b9b5-00c9690febb7","originalAuthorName":"熊文名"},{"authorName":"陈玲玲","id":"f492e1ee-0eb6-4dc2-810d-326fdf9956b5","originalAuthorName":"陈玲玲"}],"doi":"","fpage":"2463","id":"3d572fc1-fae9-4238-8a81-8fafff2cbc51","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c5fc3c1c-b40a-4015-869b-ee3b93e17fbf","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"61f90d12-7b33-43e3-91f2-ff6c7bc80dab","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"9ed34bb0-0c67-4031-872b-cfd0e01630e6","keyword":"脉冲频率","originalKeyword":"脉冲频率"},{"id":"9963dd1b-7a29-4349-9576-a8c470605cb7","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"b9891e1e-c7fb-4b83-bfcf-1a971795cc42","keyword":"仿生","originalKeyword":"仿生液"}],"language":"zh","publisherId":"xyjsclygc201410032","title":"脉冲频率对镁合金弧氧化膜在仿生中耐蚀性的影响","volume":"43","year":"2014"},{"abstractinfo":"通过正交试验,以陶瓷生长速度为主要研究指标,并结合陶瓷膜的表观质量,对磷酸盐体系电解配方进行了研究,确定适宜的电解配方为:14.0 g/L Na5P3O10、0.5g/L NaOH、2.0g/L Na2WO3、2.0g/L EDTA二钠.弧氧化陶瓷基本相为α-Al2O3和γ-Al2O3,两相比例随电解电导率的增大而提高.陶瓷生长速度随电解电导率的提高而增加,但过大的电导率将使表面质量下降.","authors":[{"authorName":"刘荣明","id":"cb041047-6b15-4c49-97f4-890a20b618f5","originalAuthorName":"刘荣明"},{"authorName":"郭锋","id":"f2db098f-32ad-4bf8-83e4-8f2351e5c699","originalAuthorName":"郭锋"},{"authorName":"娅娅","id":"2a223a72-8eeb-44fe-b24f-3af075444cd3","originalAuthorName":"娅娅"}],"doi":"10.3969/j.issn.1001-3660.2007.02.002","fpage":"4","id":"eb0369ee-6ff2-4ee9-8329-a7946bc76e66","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"caedb545-7ea0-4b4e-ac26-4730bd01dc65","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"d2b1a76f-8d98-4ddf-beda-8b27be60fb77","keyword":"磷酸盐体系","originalKeyword":"磷酸盐体系"},{"id":"dad4e0ed-3e89-48ee-adc4-933479213b46","keyword":"电解","originalKeyword":"电解液"},{"id":"db2f7331-0fca-4cfd-a24c-c1f4a0176608","keyword":"陶瓷","originalKeyword":"陶瓷层"},{"id":"c28fd818-a4eb-460f-8721-9185b913d823","keyword":"电导率","originalKeyword":"电导率"},{"id":"8928a50e-5bb8-461b-b113-9efea5d6a366","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"bmjs200702002","title":"铝合金弧氧化磷酸盐体系电解研究及陶瓷分析","volume":"36","year":"2007"},{"abstractinfo":"采用恒压模式分别在不同浓度Na2SiO3电解液体系下对ZrH1.8表面进行弧氧化处理,利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、膜测厚仪测试了陶瓷的相结构、表面形貌、截面形貌及厚度,通过真空脱氢实验评估了陶瓷的阻氢性能.研究结果表明:当Na2SiO3浓度在6~14 g/L变化时,陶瓷的厚度在25~61 μm范围内.随着Na2SiO3浓度的增加,电解的电导率线性增大,弧氧化陶瓷厚度逐渐减小.氢化锆表面弧氧化陶瓷由致密和疏松构成,靠近基体一侧为致密,陶瓷外层为疏松,在疏松中存在空洞和裂纹缺陷.陶瓷由单斜相氧化锆(M-ZrO2)和四方相氧化锆(T-ZrO1.88)构成,且以单斜相氧化锆(M-ZrO2)为主,随着电解中Na2SiO3浓度的增加,四方相T-ZrO1.88在陶瓷中比例增大.综合比较,在Na2SiO3浓度为8g/L的电解液体系下可以获得厚度适中,表面平整,致密性较好,阻氢性能优异的陶瓷,陶瓷的PRF值达到最大值10.8.","authors":[{"authorName":"闫淑芳","id":"f282bb4c-329a-4630-8f37-f29baf6d3baa","originalAuthorName":"闫淑芳"},{"authorName":"刘向东","id":"a7c0ab3a-8cdc-48ee-a136-0af0e830021c","originalAuthorName":"刘向东"},{"authorName":"陈伟东","id":"891994a6-1fbe-4f42-b695-94c5812721f3","originalAuthorName":"陈伟东"},{"authorName":"王志刚","id":"1cbb1b22-c23c-4ed5-aeff-876031b06626","originalAuthorName":"王志刚"},{"authorName":"范秀娟","id":"dd2e279e-3482-414f-a4f8-e20b77ba9d8a","originalAuthorName":"范秀娟"},{"authorName":"徐志高","id":"3608788f-69d7-4831-a9c1-4edbaf0c9953","originalAuthorName":"徐志高"}],"doi":"","fpage":"2561","id":"21ccf237-f834-420f-970f-9d9656d18bb6","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"25cdd6b8-234a-4e38-913d-4e37a2a8b250","keyword":"氢化锆","originalKeyword":"氢化锆"},{"id":"1ad9f955-5ed1-4a46-b311-7d5c2097d8f1","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"513f1979-c0c6-427f-83a6-4c1a03fc68d8","keyword":"陶瓷","originalKeyword":"陶瓷层"},{"id":"19908762-50f5-4914-9e0f-17e7c66f7de8","keyword":"电解液体系","originalKeyword":"电解液体系"}],"language":"zh","publisherId":"xyjsclygc201510044","title":"硅酸盐体系电解浓度对ZrH1.8表面弧氧化陶瓷的影响","volume":"44","year":"2015"},{"abstractinfo":"采用弧氧化技术在钛合金表面制备了羟基磷灰石(HA)陶瓷膜.研究了电解中乙酸钙、乙二胺四乙酸二钠(EDTA-2Na)质量浓度对膜Ca、P含量和二者原子比的影响.随电解中乙酸钙质量浓度增大,膜表面孔隙率基本不变,膜Ca含量增大,P含量减少,钙磷原子比增大,随电解中EDTA-2Na质量浓度增大,膜表面孔隙率先增后减,膜中Ca含量明显增大,P含量略微增大,钙磷原子比明显增大.电解的最佳组成为:K2HPO4·3H2O 6.8 g/L,Ca(CH3COO)2 26.5 g/L,EDTA-2Na 20 g/L.此时陶瓷膜表面孔隙率高达11.10%,钙磷原子比为1.65,十分接近HA的钙磷原子比(1.67).","authors":[{"authorName":"马维红","id":"0b5e8e5d-4675-4971-b8c1-ca6a67634cee","originalAuthorName":"马维红"},{"authorName":"吴连波","id":"f32db85d-4abf-4b49-901e-020c348ad309","originalAuthorName":"吴连波"},{"authorName":"李兴照","id":"92cd60ab-0833-48ef-80a1-e55ca3f93ebb","originalAuthorName":"李兴照"}],"doi":"","fpage":"823","id":"0ac9afc1-8532-4a4a-b118-29d6159a0a14","issue":"19","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"a7661aa2-bb3e-4834-ab67-f1f180ff8925","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"d9381f35-dda4-4e06-b1b3-fb3b3d7330ec","keyword":"弧氧化","originalKeyword":"微弧氧化"},{"id":"8e786f06-964e-4324-bff8-488f114af73d","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"0ddf5199-5500-47d0-afe6-1109c6f7454d","keyword":"电解组成","originalKeyword":"电解液组成"},{"id":"fa66fd2d-9cc1-49f6-ba20-42beb0547315","keyword":"孔隙率","originalKeyword":"孔隙率"}],"language":"zh","publisherId":"ddyts201419003","title":"电解组成对医用钛合金弧氧化生物陶瓷的影响","volume":"33","year":"2014"}],"totalpage":4915,"totalrecord":49148}