{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了电子用高纯Ti02的使用领域以及技术特点,简述了电子用高纯Ti02主要制备方法,包括硫酸法、TiCl4直接水解法、氯化法、钛醇盐水解法;详细阐述了各种制备方法的原理、工艺流程、工艺控制、产品质量;对各种制备方法在工艺、设备、成本等方面进行了对比.硫酸法和TiCl4直接水解法因具有工艺简单、产品质量好等优点,在国内已实现了工业化.氯化法和钛醇盐水解法因生产技术难度大、设备材质要求苛刻等方面的原因,仍处于实验室研究阶段.并提出了工业应用的建议以及今后研究的方向.","authors":[{"authorName":"罗志强","id":"6450848c-73d6-4ba4-98fa-650bf581df40","originalAuthorName":"罗志强"},{"authorName":"杜剑桥","id":"ddf3cffd-66f4-40f9-9ea3-1d492acb6a93","originalAuthorName":"杜剑桥"}],"doi":"10.3969/j.issn.0253-4312.2011.08.008","fpage":"31","id":"bc51c9cc-fbdf-4558-b5e9-6e904c66cff4","issue":"8","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"f12cdbe8-4322-41dd-bfc0-e6be275726fb","keyword":"高纯Ti02","originalKeyword":"高纯Ti02"},{"id":"6f19b804-3b7b-4515-a12b-25f193503708","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"1cf684ff-b92f-4236-afb2-73937335de75","keyword":"硫酸法","originalKeyword":"硫酸法"},{"id":"4c78e2fe-a695-4c45-8ad4-cbf1b875f118","keyword":"TiC14水解法","originalKeyword":"TiC14水解法"},{"id":"25798257-7e0d-4186-8ad3-a62f376eaab1","keyword":"氯化法","originalKeyword":"氯化法"},{"id":"961bb366-93db-4b1e-bd95-3bbf48eaa286","keyword":"钛醇盐水解法","originalKeyword":"钛醇盐水解法"}],"language":"zh","publisherId":"tlgy201108008","title":"电子用高纯二氧化钛制备方法研究","volume":"41","year":"2011"},{"abstractinfo":"为了深入研究纳米A1203-13%TiO:(ATl3)涂层的组织、性能与喷涂工艺参数之间的关系,采用正交试验法对等离子喷涂工艺的电流、电压、送粉率和喷涂距离等参数进行了优化,在涂布刮刀表面制备了纳米ATl3涂层。采用金相显微镜,SEM,EPMA和XRD等对纳米ATl3涂层的组织、磨粒磨损性能和结合强度进行了分析。结果表明:纳米ATl3涂层均匀致密,孔隙率低;涂层存在全熔和半熔双态结构特征,相结构明显,以稳定相Ot.A1:O,和Rutile—Ti02为主,存在亚稳态1一A120,相结构转变;涂层与基体以机械结合为主,结合强,耐磨性良好;涂层表面应力以残余压应力为主。","authors":[{"authorName":"毕恩兵","id":"978e6e24-a6b9-46b2-9f5e-2c730aa1ef93","originalAuthorName":"毕恩兵"},{"authorName":"孙宏飞","id":"f6670c30-56fa-412d-a86e-1dbe9a3cb51c","originalAuthorName":"孙宏飞"},{"authorName":"高鹏","id":"7195473e-e55d-45b5-a058-5826f257cf8a","originalAuthorName":"高鹏"},{"authorName":"李冲","id":"29af8059-5c83-4443-a774-0e394dafdb36","originalAuthorName":"李冲"},{"authorName":"郭娜娜","id":"a40e3819-c4c6-4d32-a471-2f192bf0e656","originalAuthorName":"郭娜娜"},{"authorName":"牛占蕊","id":"a64d78a0-6603-4f88-b7db-79a9c6c058b0","originalAuthorName":"牛占蕊"},{"authorName":"李艳","id":"39a48ae6-9e04-4fc4-a53e-883d1f5447ab","originalAuthorName":"李艳"}],"doi":"","fpage":"5","id":"ca9c8e29-c338-4e3d-845b-f2e87aafb668","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"168e93db-a712-4b13-9a00-e50b19b1e51f","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"8ce44f38-eba2-44a9-95ba-af3e31df7644","keyword":"A1203—13%Ti02","originalKeyword":"A1203—13%Ti02"},{"id":"656a0908-ffef-43af-8477-927498b251a0","keyword":"陶瓷涂层","originalKeyword":"陶瓷涂层"},{"id":"ed3d93d8-694b-49ae-ab72-d47822396dd2","keyword":"纳米结构","originalKeyword":"纳米结构"},{"id":"f21a838b-3b18-414d-97c4-ab65202ce2e7","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"e2fc3df6-adfe-4d72-9db9-50c0a3a44556","keyword":"磨粒磨损","originalKeyword":"磨粒磨损"},{"id":"8293bc35-ec5c-4c60-ab32-039bf1dc93c7","keyword":"双态分布","originalKeyword":"双态分布"}],"language":"zh","publisherId":"clbh201111003","title":"涂布刮刀表面等离子喷涂纳米AI203—13%Ti02涂层的特性","volume":"44","year":"2011"},{"abstractinfo":"TiO<,2>核壳材料作为光催化剂具有活性高、稳定性强、普适性广、应用前景广阔等优点而引起了人们广泛的兴趣.综述了近年来TiO<,2>核壳材料用作光催化剂的最新研究成果,主要包括TiO<,2>与金属、半导体、磁性材料等复合所得核壳材料及TiO<,2>自身组成核壳材料在光催化领域的应用,指出TiO<,2>与金属、半导体复合或离子掺杂等所得核壳材料都不同程度地提高了其催化性能;与磁性材料复合时虽然易于分离但是活性不理想;当以TiO<,2>为核时,通过控制合成条件可以制备出孔径不同的TiO<,2>壳层,该类核壳材料可以选择性地降解有机物.最后指出深入探讨TiO<,2>核壳材料光催化机理、开发易回收高效TiO<,2>催化剂及寻找简易制备TiO<,2>核壳材料的方法是未来TiO<,2>核壳材料研究的重要方向.","authors":[{"authorName":"郝贵敏","id":"7a72325e-f021-4944-9201-45f0232466e6","originalAuthorName":"郝贵敏"},{"authorName":"贾春阳","id":"0cbd2c4d-e6e1-4d43-9009-b388a02e7e07","originalAuthorName":"贾春阳"},{"authorName":"涂亮亮","id":"ae8ac535-07f1-41dc-b0d8-ee641d05d3c0","originalAuthorName":"涂亮亮"},{"authorName":"张家强","id":"7b6a1fb7-a52f-45dc-a4b0-8526640568aa","originalAuthorName":"张家强"}],"doi":"","fpage":"25","id":"72e93a5a-b2f9-41ef-a981-86b84da8975d","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"89d6fc60-588f-4983-89ff-f80a1bd80d95","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"05b1a75d-84eb-4fda-9287-d8ab27d83102","keyword":"核壳结构","originalKeyword":"核壳结构"},{"id":"28af92e0-ecbe-4144-98a6-c8e5d207a058","keyword":"光催化","originalKeyword":"光催化"},{"id":"dc80185e-90c5-46cb-953f-2a0fa02e5b81","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"cldb201113006","title":"Ti02光催化核壳材料的研究进展","volume":"25","year":"2011"},{"abstractinfo":"为了提高TiO2的光催化效果,使催化剂易于回收再利用,利用粉煤灰为载体,采用低温超声水热法制备纳米TiO2/粉煤灰复合光催化剂.借助X射线衍射(XRD)、扫描电镜(TEM)、红外(IR)和紫外-可见(UV-Vis)光谱分析对产物进行了表征,研究了TiO2加入量、超声时间等对复合物形貌、晶型和性能的影响.光催化降解亚甲基蓝的实验结果表明,由于TiO2和粉煤灰的共同作用,所得复合光催化剂的性能优于纯TiO2的光催化性能.","authors":[{"authorName":"李娟","id":"7d0b4c2a-a5d9-4c73-bb46-c673878dcc24","originalAuthorName":"李娟"},{"authorName":"朱艺","id":"b6eac1de-bad1-47eb-823a-c82722496b27","originalAuthorName":"朱艺"},{"authorName":"李改","id":"d91c050d-c160-42a2-9d8d-068d7d18059b","originalAuthorName":"李改"},{"authorName":"张胜义","id":"c4d2e65b-ba46-417a-8ed5-26dcc6e079fc","originalAuthorName":"张胜义"},{"authorName":"金葆康","id":"a4d80f35-687a-4216-a477-99c3b3b5084f","originalAuthorName":"金葆康"},{"authorName":"田玉鹏","id":"044c1ef2-76ee-4d04-9741-508abbf6a69e","originalAuthorName":"田玉鹏"}],"doi":"","fpage":"521","id":"5b289d51-417b-4b63-af73-e5d2f4250bb3","issue":"z3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"70892410-f51b-42b3-9d0d-4dce1d4af39e","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"06d9f8b5-5d0c-4f93-b96f-9de2397f18f7","keyword":"粉煤灰","originalKeyword":"粉煤灰"},{"id":"07f7fac8-d9e7-4e60-bc28-a212dafe1b54","keyword":"复合物","originalKeyword":"复合物"},{"id":"a0fd5dfc-720e-4271-9c7e-619c76f72c74","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gncl2011z3038","title":"纳米Ti02/粉煤灰复合材料的制备及光催化性质","volume":"42","year":"2011"},{"abstractinfo":"为了得到性能优异的纳米Ti02-Ni基复合电刷镀层,通过正交试验研究了镀镍液中纳米TiO2颗粒含量、刷镀电压等因素对纳米Ti02-Ni基镀层性能的影响。通过锉削试验、骤冷骤热试验、划痕试验定性表征了纳米Ti02-Ni基镀层与钢基体的结合性能,并运用扫描电镜(SEM)和能谱仪(EDS)分析了纳米Ti02-Ni基镀层的表面形貌和成分。结果表明:镀液中纳米TiO2颗粒浓度和刷镀电压2个因素对镀层性能影响显著,镀液初始温度影响不大,纳米Ti02含量10g/L,刷镀电压10V,镀液温度30℃时,制备的纳米Ti02-Ni基镀层显微硬度和耐蚀性能最优,与基体结合良好,无起皮、剥落;复合镀层显微硬度较单独快速镍镀层有很大提高,由于纳米颗粒起到硬质点作用使其承载能力强,复合镀层经500℃热处理后显微硬度仍不低于360HV;纳米Ti02-Ni基电刷镀镀层组织比快速镍镀层的组织细小且致密,晶粒显著细化;复合镀层中含有较高含量的Ti元素。","authors":[{"authorName":"王芹芹","id":"c2f888ee-334b-414a-b2c4-67b363a4ee91","originalAuthorName":"王芹芹"},{"authorName":"沈承金","id":"baa1043a-2d36-4114-af49-f1f3f6634c38","originalAuthorName":"沈承金"},{"authorName":"周仕勇","id":"940f4e46-8085-41a4-b917-41d5fdc58710","originalAuthorName":"周仕勇"},{"authorName":"朱振","id":"5ab0750d-a17e-438f-9513-526bd59c282f","originalAuthorName":"朱振"}],"doi":"","fpage":"12","id":"293a6756-3e66-467f-8f1e-81e07e0ce8c5","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"76d22316-2c77-4c41-a71b-555adc9699d0","keyword":"电刷镀","originalKeyword":"电刷镀"},{"id":"51f4985c-7a0d-4ca3-a686-0d612046e8c0","keyword":"复合镀镍层","originalKeyword":"复合镀镍层"},{"id":"2b11bf35-0b13-4b34-9cc4-0ebd1c5d3bde","keyword":"纳米Ti02","originalKeyword":"纳米Ti02"},{"id":"f5c38e59-40c1-451e-9e91-b62e46198b65","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"aedd2ad5-56ac-4249-a099-dfe3dd79769b","keyword":"成分","originalKeyword":"成分"},{"id":"ba973459-de32-4123-845e-6513aa91c344","keyword":"性能","originalKeyword":"性能"},{"id":"631617a1-970e-4cc3-8a12-61bc1bcc4bbf","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"59f495c6-ad7d-4d98-a5c1-14699a1fba20","keyword":"参数优化","originalKeyword":"参数优化"}],"language":"zh","publisherId":"clbh201110005","title":"纳米Ti02-Ni基电刷镀参数的优化及镀层性能","volume":"44","year":"2011"},{"abstractinfo":"用十二烷基磺酸钠对Ag/TiO2光催化剂表面进行了改性,分析了不同酸碱条件下光催化剂表面对烯酰吗啉分子的吸附和氢键的形成情况.在紫外光条件下,以Ag沉积量为0.125%(摩尔分数)的纳米Ag仍ToP2为催化剂,对浓度为100 mg·L-1的烯酰吗啉稀水溶液进行光催化降解,5 h降解率为94%.根据降解过程对烯酰吗啉浓度的高效液相色谱分析、液.质联用色谱分析和紫外.可见光谱分析,探讨了烯酰吗咻的可能分解路径.","authors":[{"authorName":"阎建辉","id":"007a2eb6-ae5d-4a39-bd18-cbd9c6188fb9","originalAuthorName":"阎建辉"},{"authorName":"朱政斌","id":"29c6bc6e-6033-4d3d-b6f3-c6b4a5df22c3","originalAuthorName":"朱政斌"},{"authorName":"刘强","id":"8bc0fea0-2486-4acd-bc86-deebb79dc5ca","originalAuthorName":"刘强"},{"authorName":"朱裔荣","id":"e986b7c6-2c71-40a8-95b5-8fa4853dc30d","originalAuthorName":"朱裔荣"}],"doi":"10.3969/j.issn.0258-7076.2008.01.017","fpage":"78","id":"0874dee1-3c6c-46a7-aa38-4e43dd965f23","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f4110698-1fd7-4c30-9bef-d58eae1de31d","keyword":"烯酰吗啉","originalKeyword":"烯酰吗啉"},{"id":"43c1c2ca-8b37-4d51-a7ec-67bad6c7611d","keyword":"光催化降解","originalKeyword":"光催化降解"},{"id":"359214e5-3c34-4cf5-8119-714ee5eeb079","keyword":"纳米Ag/TiO2","originalKeyword":"纳米Ag/TiO2"}],"language":"zh","publisherId":"xyjs200801017","title":"纳米Ag/Ti02对烯酰吗啉的吸附与光催化降解","volume":"32","year":"2008"},{"abstractinfo":"研究了纳米TiO2的制备、相结构及抑菌作用,含0.7%TiO2的纳米TiO2/PS复合材料的分解内毒素及抑菌作用.结果表明:锐钛矿型纳米TiO2对常见的菌种具有良好的抑制作用.纳米TiO2/PS复合材料具有明显的分解细菌内毒素的作用和良好的抑菌效果;对内毒素的分解率可达90%以上,对常见细菌的杀菌率达到99%以上.","authors":[{"authorName":"彭红瑞","id":"c2b8853f-3f4f-4be6-a1c3-44f7458c8ab1","originalAuthorName":"彭红瑞"},{"authorName":"孙凤","id":"302fec4c-4cf7-40dc-b7d6-73c695b8d0b6","originalAuthorName":"孙凤"},{"authorName":"张志焜","id":"e4291ce6-bb9d-4ba9-aa0f-a6e4154e9639","originalAuthorName":"张志焜"}],"doi":"10.3969/j.issn.1000-3738.2004.08.016","fpage":"46","id":"36b7a439-5710-4443-b396-edb38efac948","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"984cd244-1299-4937-8050-17f72aa3a715","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"27c13ad6-2105-4b6e-b85d-bd8755240275","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1b9c4542-30b1-4a24-9c24-b51705954e31","keyword":"分解内毒素","originalKeyword":"分解内毒素"},{"id":"cbbf2cb7-1471-4a8c-8ff4-0a6e310ae82b","keyword":"抑菌","originalKeyword":"抑菌"}],"language":"zh","publisherId":"jxgccl200408016","title":"纳米Ti02改性塑料的抗菌及分解内毒素特性研究","volume":"28","year":"2004"},{"abstractinfo":"综述了以TiCl4为原料制备纳米TiO2的主要方法:氢氧火焰水解法、气相氧化法、气相燃烧法、液相沉淀法、溶胶-凝胶法、微乳液法和水热法,并对其优缺点做了相应的评论,最后指出了今后研究的方向.","authors":[{"authorName":"杜剑桥","id":"2d0dcf25-1038-4338-b7d4-ed9a4e0c3818","originalAuthorName":"杜剑桥"},{"authorName":"王兰武","id":"080714da-0c9a-408a-b441-52daab28e733","originalAuthorName":"王兰武"}],"doi":"10.3969/j.issn.1009-9964.2005.02.005","fpage":"17","id":"5d5ec903-e3d7-4879-a294-3eaa52423af7","issue":"2","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"c5736e31-c54b-4781-a91a-4634df1cf846","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"455c642e-0e5c-4a1f-aae4-cc024d7685e7","keyword":"TiCl4","originalKeyword":"TiCl4"},{"id":"5ffc44c3-c748-4439-983c-42b9d7689929","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"f193ba68-faa2-4683-8b4f-f1f50fddb1cf","keyword":"研究状况","originalKeyword":"研究状况"}],"language":"zh","publisherId":"tgyjz200502005","title":"用TiCl4制备纳米Ti02的研究状况","volume":"22","year":"2005"},{"abstractinfo":"通过在阴极制备工艺、电解槽设计及熔盐预处理等方面的改进,电化学直接还原TiO2得到了纯度较高的金属钛.采用配有X光电子能谱仪(XPS)的扫描电镜(SEM)、X射线衍射(XRD)、化学分析等方法对电化学还原样品进行分析,确定TiO2阴极的还原是由表及里、由高价到低价再到金属进行的.对还原过程分析表明:反应器内副反应的发生是影响还原过程电流效率低的主要因素.并探索性地提出了提高电流效率的几条途径.","authors":[{"authorName":"扈玫珑","id":"1a976d2a-3d66-450f-a0e8-c3fd9c2c150e","originalAuthorName":"扈玫珑"},{"authorName":"白晨光","id":"20e1e0ea-6a47-43f1-a932-36e32da0b804","originalAuthorName":"白晨光"},{"authorName":"董凌燕","id":"db09e50a-0ae6-4a5c-ada9-e59764157b2e","originalAuthorName":"董凌燕"},{"authorName":"李泽全","id":"ac2298c9-0867-4166-9227-033047605757","originalAuthorName":"李泽全"},{"authorName":"陈登福","id":"61d47cd1-0401-4b3b-87b1-d58ad9b2eea5","originalAuthorName":"陈登福"},{"authorName":"邱贵宝","id":"9bd880e0-61b6-43d8-9bc9-1a4fcab0633f","originalAuthorName":"邱贵宝"},{"authorName":"温良英","id":"a3aeae0e-e3ab-4e40-8c42-234a31fdaf9c","originalAuthorName":"温良英"}],"doi":"10.3969/j.issn.1671-6620.2007.03.010","fpage":"209","id":"d47e4ea8-2deb-40b7-a83e-ebfa86837ed4","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"4529fe35-a11a-4737-8483-272c1a42c4e9","keyword":"电解","originalKeyword":"电解"},{"id":"dbd9a1ae-98f4-44fb-8b8a-23c4be243449","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"facbd9f3-d6bb-4a64-96a8-c40e6d3dd5d0","keyword":"金属钛","originalKeyword":"金属钛"},{"id":"78661a70-edd1-4ab5-991e-92ee03120244","keyword":"副反应","originalKeyword":"副反应"},{"id":"b175c76b-5fbd-4692-9b95-1e65017cc554","keyword":"电流效率","originalKeyword":"电流效率"}],"language":"zh","publisherId":"clyyjxb200703010","title":"电化学直接还原Ti02制取金属钛的研究","volume":"6","year":"2007"},{"abstractinfo":"利用TiC粉、Ti粉和Al粉为原料,以摩尔比为TiC:Al:Ti=2:1.2:1混合,通过无压烧结的方法合成高纯的Ti3AlC2粉末材料.研究了在不同的烧结温度(1200℃~1500℃)分别保温15 min,以及在1300℃下保温不同时间的烧结结果.最终得出结论,在1300℃~1400℃保温15 min后可以得到高纯度的Ti3AlC2材料,Ti3AlC2含量高达96.76ω/%.另外,由于1500℃时合成的样品中晶粒已经很大,使得其在做粉末X-射线衍射时很容易产生织构,使Ti3AlC2的{002}峰异常增强.","authors":[{"authorName":"彭春庆","id":"a412114d-9d91-4fa4-87bf-d37b5d1b4c85","originalAuthorName":"彭春庆"},{"authorName":"汪长安","id":"28e2b392-4c94-419e-a23c-7b0d521ea5a4","originalAuthorName":"汪长安"},{"authorName":"黄勇","id":"d6e5c25b-a586-48fe-a82a-ec6f3f919ed3","originalAuthorName":"黄勇"}],"doi":"","fpage":"540","id":"8d8553de-cdb4-4b87-b2d6-19e4da1d7a55","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1338b2d1-0e24-4424-8041-176c1f70ee72","keyword":"Ti3AlC2","originalKeyword":"Ti3AlC2"},{"id":"23bf8081-e39c-4195-851b-29a34b371445","keyword":"粉末","originalKeyword":"粉末"},{"id":"7e18e8cd-c34f-4b01-9a8e-49c78fadec20","keyword":"无压烧结","originalKeyword":"无压烧结"},{"id":"57ec5188-dc44-4abf-8622-9a78716709f6","keyword":"合成","originalKeyword":"合成"}],"language":"zh","publisherId":"xyjsclygc2005z1145","title":"无压烧结合成高纯Ti3AlC2粉末材料","volume":"34","year":"2005"}],"totalpage":3914,"totalrecord":39132}