{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提出了CaO焙烧生焦脱硫的新方法,考察了焙烧时间、焙烧温度、CaO掺杂比例对生焦脱硫率的影响,利用TG-DSC联合法对样品进行分析,研究了生焦与CaO焙烧脱硫反应的动力学.结果表明,生焦与CaO焙烧脱硫反应活化能E为150.8 kJ/mol,指前因子A为6.98×1011 min-1,反应机理函数为f(α)=(1-a)2.54,最佳工艺条件为:焙烧温度1173 K,焙烧时间1h,CaO掺杂比例75%;该条件下生焦的脱硫率可达47%,主要产物为CaS、CaCO3.","authors":[{"authorName":"董宏静","id":"27586e5e-eb50-414c-a0e7-292c669760b7","originalAuthorName":"董宏静"},{"authorName":"谢刚","id":"2160ec52-0ed0-4a1b-afe8-172ab8ebf31e","originalAuthorName":"谢刚"},{"authorName":"于站良","id":"21685231-6eef-43c7-a0c3-b2c1026a6d33","originalAuthorName":"于站良"},{"authorName":"李荣兴","id":"d52790e7-e663-45df-b4ab-7f9ec63ea17f","originalAuthorName":"李荣兴"},{"authorName":"俞小花","id":"52bc82b3-cbbe-4498-8689-6fddff9543a2","originalAuthorName":"俞小花"}],"doi":"10.11896/j.issn.1005-023X.2015.02.022","fpage":"101","id":"723b34f3-ac63-45cf-b3b7-184a15d402a0","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"56df0d34-90d6-4e87-929c-2ba5e6b1038a","keyword":"生焦","originalKeyword":"生焦"},{"id":"416e235f-5d03-43b4-b729-3046dcad0930","keyword":"脱硫","originalKeyword":"脱硫"},{"id":"4207aa57-f147-41de-b993-53611f52545e","keyword":"焙烧","originalKeyword":"焙烧"},{"id":"f2c817f6-218e-40c3-bf32-0f9e650c12b8","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"cldb201502022","title":"生焦与氧化钙焙烧脱硫反应动力学研究","volume":"29","year":"2015"},{"abstractinfo":"针对复杂多金属高铟高铁闪锌矿的氧压酸浸最佳参数进行研究.考察了浸出温度、硫酸浓度、液固比、氧压对Zn,In及Fe浸出率的影响,并绘制浸出率与各因素的关系曲线,分析不同因素参数下,Zn,In及Fe浸出率的变化规律.研究结果表明:Zn浸出率随着浸出温度的升高先增大后降低,In浸出率随温度的升高不断增大,且在150 ~ 160℃之间,Zn,In的浸出率分别为92%和56%;随着硫酸浓度的增加,Zn,In,Fe浸出率显著增大,当硫酸浓度超过150~155 g·L-1时,Zn浸出率基本保持不变,Fe浸出率却急剧增大,为了保证Zn,In高浸出率的同时,尽可能降低Fe浸出率,选择最佳硫酸浓度为150 ~ 155 g·L-1;Zn,In浸出率随着液固比的增大而增大,且在液固比为5:1时,Zn,In浸出率高达97.8%和72.9%;Zn的浸出率随着氧压的增大而增大,但In浸出率基本不变,氧压为1.0 MPa时,Zn,In浸出率分别为98.97%和69.9%,且此后Zn浸出率基本保持不变.实验确定了4个最佳参数:浸出温度150 ~ 160℃,硫酸浓度150 ~ 155 g·L-1,液固比5:1,氧压1.0 MPa,此时Zn,In浸出率高达98%和70%,Fe浸出率为9.38%且在浸出液中含量低于2 g·L-1,通过X射线光电子能谱(XPS)分析检测确定Fe主要以针铁矿的形态存在于渣相中.","authors":[{"authorName":"闫书阳","id":"d46ff95b-ff6d-4dab-b7f8-9ba69a4e0342","originalAuthorName":"闫书阳"},{"authorName":"谢刚","id":"f12ac5cd-8fa1-4d62-b634-d3db55aa0f8e","originalAuthorName":"谢刚"},{"authorName":"于站良","id":"94e470c8-23be-4649-8703-f9120fd423f4","originalAuthorName":"于站良"},{"authorName":"施辉献","id":"34b79167-be04-48ea-a1a5-d4a528ffa229","originalAuthorName":"施辉献"},{"authorName":"莫腾腾","id":"172bcce2-6552-40b0-9750-da2d19047da4","originalAuthorName":"莫腾腾"},{"authorName":"董宏静","id":"6de15e13-b692-428d-9170-2b784b571498","originalAuthorName":"董宏静"}],"doi":"10.13373/j.cnki.cjrm.2016.04.013","fpage":"378","id":"7b703bf4-badc-49d4-be98-d158e37cd14a","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"23f92f52-2291-4c33-a9dd-651c5e907213","keyword":"多金属闪锌矿","originalKeyword":"多金属闪锌矿"},{"id":"41685f40-26a2-4e63-b865-6d0c251ca5a4","keyword":"氧压酸浸","originalKeyword":"氧压酸浸"},{"id":"4dd1d911-b7fb-4d86-ba5c-8b0ee17ebf85","keyword":"浸出率","originalKeyword":"浸出率"},{"id":"3f96776e-02bc-40ee-b7d2-570b44403a91","keyword":"针铁矿","originalKeyword":"针铁矿"}],"language":"zh","publisherId":"xyjs201604013","title":"复杂多金属高铟高铁闪锌矿的氧压酸浸","volume":"40","year":"2016"},{"abstractinfo":"采用砂土作为模拟土壤,通过失重法及电化学方法,研究了土壤盐浓差A3钢的宏电池民腐蚀的影响规律。结果表明位于高盐土壤中的试样试验初期为宏电池阳极,而在第5天发生了极性逆转。 ","authors":[{"authorName":"孙成","id":"fad53d26-8b5f-49e0-833b-04d86bc59f07","originalAuthorName":"孙成"},{"authorName":"李洪锡","id":"d9c6adad-694f-4c0f-bfe1-7b10d99e9dec","originalAuthorName":"李洪锡"},{"authorName":"张淑泉等","id":"318f7173-1276-4af4-93d0-409b388c169f","originalAuthorName":"张淑泉等"}],"categoryName":"|","doi":"","fpage":"101","id":"95a0908c-96bd-4cf5-8373-77ba2eda5a34","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"b0cf9065-4aea-40fc-8ba6-085cd4197a44","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"a7ec12b9-aed6-44bf-bdc3-43ea8e43cfc8","keyword":"salt concernation in soil","originalKeyword":"salt concernation in soil"},{"id":"eaa98ff4-1a71-47df-8ad0-8680ec9b8d8e","keyword":"macrocell cornion","originalKeyword":"macrocell cornion"}],"language":"zh","publisherId":"1002-6495_2000_2_5","title":"土壤盐浓差宏电池对碳钢的腐蚀","volume":"12","year":"2000"},{"abstractinfo":"采用砂土作为模拟土壤,通过失重法及电化学方法,研究了土壤盐浓差对A3钢的宏电池腐蚀的影响规律.结果表明位于高盐土壤中的试样试验初期为宏电池阳极,而在第5 天发生了极性逆转.","authors":[{"authorName":"孙成","id":"6de82a3c-7871-46f6-80e2-4cd3ede997d0","originalAuthorName":"孙成"},{"authorName":"李洪锡","id":"5178d6b7-b30b-4d5f-abb8-36d24e0c2d27","originalAuthorName":"李洪锡"},{"authorName":"张淑泉","id":"9ec4e07e-1a37-46ee-a419-15611c940a62","originalAuthorName":"张淑泉"},{"authorName":"高立群","id":"a0520bef-d3fb-41f6-9480-1511ae90f247","originalAuthorName":"高立群"}],"doi":"10.3969/j.issn.1002-6495.2000.02.010","fpage":"101","id":"9584052e-0be4-4bd0-b182-6d32766f1812","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"94335ec0-11e8-4b6a-ab8e-a8be9b6685e3","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"98b42eb4-64b9-4a06-a5ce-a907f37ee9b2","keyword":"土壤盐浓差","originalKeyword":"土壤盐浓差"},{"id":"1189b6f3-4a3d-4c81-9f5b-3376383c26dd","keyword":"宏电池腐蚀","originalKeyword":"宏电池腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200002010","title":"土壤盐浓差宏电池对碳钢的腐蚀","volume":"12","year":"2000"},{"abstractinfo":"采用电化学测试和扫描电子显微镜等技术对模拟硫酸型酸雨作用下X70钢土壤宏电池腐蚀进行研究.结果表明,X70钢在酸化后土壤中腐蚀电位较负,成为宏电池阳极,从而受到加速作用.宏电池阴阳极面积比增大,宏电池阳极的腐蚀速率也增大.当宏电池阴阳极面积比1∶1时,宏电池腐蚀强度系数γ为4.32;当宏电池阴阳极面积比15∶1时,宏电池腐蚀强度系数γ则达到18.29.","authors":[{"authorName":"王欣","id":"7e0f5555-421b-4572-ab11-47c90aa4d447","originalAuthorName":"王欣"},{"authorName":"许进","id":"8efdacda-3892-4fb1-87c4-2ba2ea633be0","originalAuthorName":"许进"},{"authorName":"孙成","id":"db6bb14a-61c2-4864-aff5-653272ba57ca","originalAuthorName":"孙成"},{"authorName":"王福会","id":"355be2fb-8dd8-4c76-ae32-00482b45d125","originalAuthorName":"王福会"}],"doi":"","fpage":"5","id":"adcffd4f-6af5-4d2d-921a-2a3313a59e0d","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"51b70f32-7c1c-400f-b53f-a9f3b832d438","keyword":"模拟硫酸型酸雨","originalKeyword":"模拟硫酸型酸雨"},{"id":"607e33be-78aa-4f53-af4b-4cf590f9f9db","keyword":"X70钢","originalKeyword":"X70钢"},{"id":"524a95cc-4e85-42c5-8571-266ba81616e7","keyword":"宏电池腐蚀","originalKeyword":"宏电池腐蚀"},{"id":"9c30813d-04f5-49fe-899c-70ea575dcfe0","keyword":"土壤","originalKeyword":"土壤"},{"id":"d3f0263a-a255-412e-80d7-37610a06458e","keyword":"腐蚀强度系数","originalKeyword":"腐蚀强度系数"}],"language":"zh","publisherId":"fsyfh201301002","title":"模拟硫酸型酸雨作用下的X70钢土壤宏电池腐蚀","volume":"34","year":"2013"},{"abstractinfo":"本文探讨一种适用于复合材料宏细观间跨尺度分析的细观元方法.细观元法在结构的常规有限元内部设置密集细观单元以反映材料细观构造,又通过协调条件将各细观元结点自由度转换为同一常规有限元自由度,再上机计算.此方法可实现材料细观结构到构件宏观响应的直接过渡分析,而计算单元与自由度又等同一般常规有限元,为解决具有细观结构新材料与构件跨尺度分析提供一种新的有力工具.本文给出用于宏细观跨尺度分析细观元法的基本原理与算式,并以纤维增强复合材料和功能梯度复合材料为例介绍其工程应用.","authors":[{"authorName":"王华宁","id":"266224b2-8e7d-4839-990b-c01a62e75706","originalAuthorName":"王华宁"},{"authorName":"曹志远","id":"9b098c6e-f065-40a7-9487-5eae6ab5ef50","originalAuthorName":"曹志远"},{"authorName":"程红梅","id":"23d489fb-3951-4785-ba08-34f7050bd443","originalAuthorName":"程红梅"},{"authorName":"付志平","id":"a91349cd-ec91-42e1-b4a8-1b85589d46a5","originalAuthorName":"付志平"}],"doi":"10.3969/j.issn.1003-0999.2006.06.001","fpage":"3","id":"9ee4517b-aabc-45b2-90a7-dddf9c17790e","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d54efe84-e28b-4a22-917c-e54440855bfd","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e3ed01dc-ffec-4865-9ed2-4c4600a03ae9","keyword":"跨尺度分析","originalKeyword":"跨尺度分析"},{"id":"1c7c3b1d-4a22-4b94-841e-8a2e09a0bfbc","keyword":"细观元法","originalKeyword":"细观元法"}],"language":"zh","publisherId":"blgfhcl200606001","title":"复合材料构件宏细观跨尺度分析","volume":"","year":"2006"},{"abstractinfo":"在实验室中通过模拟装置对Q235钢在土壤中的宏电池腐蚀行为进行了研究.结果表明,饱和/非饱和土壤环境的差异对金属的宏电池腐蚀具有决定性的作用;土壤的电阻率可以影响宏电池的电流分布.","authors":[{"authorName":"高立群","id":"53ba4774-c0b8-40b7-823e-77ef806b4f77","originalAuthorName":"高立群"},{"authorName":"李洪锡","id":"c5bd9149-887e-48dc-9192-4fca7b24e4dd","originalAuthorName":"李洪锡"},{"authorName":"孙成","id":"9c38d662-02aa-4c44-9931-dff5ad5448ff","originalAuthorName":"孙成"},{"authorName":"张淑泉","id":"21939267-8a35-412b-ae7d-bd3584819d96","originalAuthorName":"张淑泉"}],"doi":"10.3969/j.issn.1005-748X.2000.01.004","fpage":"12","id":"af178b23-7628-4fa2-a6f1-0276a4f3f1eb","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"418b0aba-1250-4260-92e7-e31615cc2be4","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"},{"id":"6d3000a8-e51a-493a-9c94-a797d35478f0","keyword":"宏电池腐蚀","originalKeyword":"宏电池腐蚀"},{"id":"a7ec575f-208c-46eb-8e4e-1b8fb5ed4a47","keyword":"Q235钢","originalKeyword":"Q235钢"}],"language":"zh","publisherId":"fsyfh200001004","title":"Q235钢在土壤中宏电池腐蚀行为的研究","volume":"21","year":"2000"},{"abstractinfo":"利用极化曲线、电化学阻抗、扫描电镜和表面能谱等方法,研究了硫酸盐还原菌对X70钢在土壤中宏电池腐蚀的影响.结果表明,接菌或灭菌粘土和砂土组成的宏电池,砂土中试样为宏电池的阴极,粘土中试样为阳极;随实验时间的增加,接菌及灭菌粘土中自然埋藏X70钢腐蚀速率逐渐减小,而砂土中宏电池阳极的腐蚀速率一直相当高;接菌土壤宏电池的电流和电动势比灭菌的大,接菌及灭菌粘土中阳极的腐蚀速率分别是自然腐蚀速率的4.93和2.45倍;在宏电池阴阳极面积比15∶1情况下,接菌及灭菌粘土中宏电池阳极的腐蚀速率分别为宏电池阴阳极面积比11时的5.01及2.33倍.","authors":[{"authorName":"伍远辉","id":"3360dfcc-966d-427e-88ef-c88c7da3cf6b","originalAuthorName":"伍远辉"},{"authorName":"孙成","id":"7e954ce6-8329-40d0-9737-9dcc93f83b47","originalAuthorName":"孙成"},{"authorName":"勾华","id":"9976c10c-84a2-48d6-95f4-536a7b3d3e0d","originalAuthorName":"勾华"}],"categoryName":"|","doi":"","fpage":"98","id":"94a7098f-c6d5-4000-beab-73e726119d7f","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"a363a45b-2eaf-48cc-adc1-cdba9aad92c7","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"fa1b9bab-0bee-4853-a086-67f6d70b26f5","keyword":"null","originalKeyword":"null"},{"id":"ab114aa5-873c-4f8e-aa59-34be419b840e","keyword":"null","originalKeyword":"null"},{"id":"0eed7156-ebd5-48a2-a2e3-e1d8b3e2defe","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2007_2_14","title":"硫酸盐还原菌对X70钢土壤宏电池腐蚀的影响","volume":"19","year":"2007"},{"abstractinfo":"利用极化曲线、电化学阻抗、扫描电镜和表面能谱等方法,研究了硫酸盐还原菌对X70钢在土壤中宏电池腐蚀的影响.结果表明,接菌或灭菌粘土和砂土组成的宏电池,砂土中试样为宏电池的阴极,粘土中试样为阳极;随实验时间的增加,接菌及灭菌粘土中自然埋藏X70钢腐蚀速率逐渐减小,而砂土中宏电池阳极的腐蚀速率一直相当高;接菌土壤宏电池的电流和电动势比灭菌的大,接菌及灭菌粘土中阳极的腐蚀速率分别是自然腐蚀速率的4.93和2.45倍;在宏电池阴阳极面积比15∶1情况下,接菌及灭菌粘土中宏电池阳极的腐蚀速率分别为宏电池阴阳极面积比1∶1时的5.01及2.33倍.","authors":[{"authorName":"伍远辉","id":"89474cf1-7316-4f27-a996-250a47d3cb1d","originalAuthorName":"伍远辉"},{"authorName":"孙成","id":"3c794e0e-7af2-4fc1-a272-e7bcb411081c","originalAuthorName":"孙成"},{"authorName":"勾华","id":"1497de99-2481-4659-9f4c-40eef303dfcf","originalAuthorName":"勾华"}],"doi":"10.3969/j.issn.1002-6495.2007.02.006","fpage":"98","id":"38642e0c-f12a-401c-a7b0-daa2fa662b00","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"4fb4c93b-b4ba-45c2-a5d8-7aa0f296d906","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"ff6d0436-225b-4989-a795-ff580b7eb0c0","keyword":"X70钢","originalKeyword":"X70钢"},{"id":"ddd5734d-c364-419c-b0a7-5a948d4bda9b","keyword":"宏电池","originalKeyword":"宏电池"},{"id":"47f73327-9665-4572-a104-dbde0d4dc1e9","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200702006","title":"硫酸盐还原菌对X70钢土壤宏电池腐蚀的影响","volume":"19","year":"2007"},{"abstractinfo":"在钢筋混凝土结构中,钢筋腐蚀防护的评价通常是基于微电池腐蚀理论,很少是基于宏电池腐蚀理论.本文基于宏电池腐蚀理论,将阴极钢筋和阳极钢筋分别制作成两个独立的砂浆试块,再将不同浓度的亚硝酸离子溶液添加到阳极试块中,通过分析阴极钢筋和阳极钢筋之间的宏电池电位差和宏电池腐蚀电流的变化,来评价亚硝酸离子对钢筋宏电池腐蚀的抑制效果.实验结果表明,充足的亚硝酸离子能够增加阳极钢筋的腐蚀阻抗,降低阴阳极钢筋间的宏电池电位差,从而降低钢筋间的宏电池腐蚀电流.亚硝酸离子浓度越高,对宏电池腐蚀的抑制效果越显著.","authors":[{"authorName":"李美丹","id":"68982afd-7f6d-47f8-8384-15516187d7f4","originalAuthorName":"李美丹"},{"authorName":"曹忠露","id":"e6e54035-61fd-46e6-b9f2-6922faec55c4","originalAuthorName":"曹忠露"},{"authorName":"日比野成","id":"46f982d4-7c6d-41c9-bb02-7c01dfd52834","originalAuthorName":"日比野成"}],"doi":"","fpage":"2291","id":"66cd7c9d-aa5e-4016-92a1-3f95ce0018d8","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c81cd31d-3a62-4206-99c4-5150827950f8","keyword":"亚硝酸离子","originalKeyword":"亚硝酸离子"},{"id":"e31f80d9-b411-4c6a-81c5-bb85c8168b83","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"8266053b-9155-4208-aa65-f425e761ce0d","keyword":"宏电池腐蚀电流","originalKeyword":"宏电池腐蚀电流"},{"id":"812d2c8c-c85e-43d1-9938-2f522a79b759","keyword":"钢筋","originalKeyword":"钢筋"},{"id":"b062a19c-65fd-44cb-bc4b-bc72cb8f8038","keyword":"混凝土","originalKeyword":"混凝土"}],"language":"zh","publisherId":"gsytb201607054","title":"亚硝酸离子浓度对混凝土中钢筋宏电池腐蚀电流的影响","volume":"35","year":"2016"}],"totalpage":90,"totalrecord":900}