{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提出了四步法三维四向矩形编织复合材料的单胞几何模型,该模型考虑了空间纤维束的相互扭结和挤压而造成的纤维束弯曲和截面形状变化.基于刚度体积平均思想,采用微元段直纤维的单向层板刚度分析方法建立了相应的刚度预报模型,得到了材料的工程弹性常数,数值结果表明了该模型的有效性;分析了工艺参数和纤维束横截面形状对弹性常数的影响规律,得到了一些有益结论.","authors":[{"authorName":"徐焜","id":"c10d6dff-c5e2-4c68-8d7b-e633d0fa0bea","originalAuthorName":"徐焜"},{"authorName":"许希武","id":"fbcd573b-d7d7-42f2-8105-004628ec3197","originalAuthorName":"许希武"},{"authorName":"汪海","id":"224551df-149d-4687-a310-60e1b0d45add","originalAuthorName":"汪海"}],"doi":"10.3321/j.issn:1000-3851.2005.01.024","fpage":"133","id":"0dea3e88-9767-4574-ad4a-2b9346f5323d","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"fad3d4f1-9ead-4fda-a47b-d249643aec97","keyword":"三维编织","originalKeyword":"三维编织"},{"id":"a1cc7edb-f33e-43a7-b692-98ef1a6cf563","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e7fb1a46-8133-48cf-808a-9aabe5fde161","keyword":"几何模型","originalKeyword":"几何模型"},{"id":"89333762-de64-4b0a-80a3-3e8812c200c9","keyword":"工程弹性常数","originalKeyword":"工程弹性常数"}],"language":"zh","publisherId":"fhclxb200501024","title":"三维四向编织复合材料的几何建模及刚度预报","volume":"22","year":"2005"},{"abstractinfo":"提出了一种实用的声学法测量复合材料弹性常数的方法.依据复合材料中声波速度与材料弹性常数之间的本构关系,测量不同传播方向的少数几个声速,就可以得到其弹性常数矩阵.以复合绝缘子为测量样品,为提高测量横波的精度,根据超声波在边界上的波型转换条件,使用常规纵波探头对由掠入射纵波产生的横波进行测量.","authors":[{"authorName":"陆铭慧","id":"151ec4ec-2b12-4062-a5db-09a95257f9a9","originalAuthorName":"陆铭慧"},{"authorName":"杨奕","id":"fa490319-0ae8-4aa4-8d3f-f4f9fe17b548","originalAuthorName":"杨奕"},{"authorName":"陈以方","id":"360cf225-3a7b-4884-99de-aa37bf6f1965","originalAuthorName":"陈以方"},{"authorName":"付德永","id":"3b5bde53-f747-4ef8-b157-a835213f9de0","originalAuthorName":"付德永"}],"doi":"10.3969/j.issn.1001-4381.2005.11.013","fpage":"46","id":"a1c13fbf-7b6e-4ffc-9fe8-a41f20938d6a","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c0e42772-e92b-4cbf-aa09-999313f3b3c3","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8e02d536-3af7-4d9b-917d-80fe9f217fbe","keyword":"弹性常数矩阵","originalKeyword":"弹性常数矩阵"},{"id":"68390c5b-f6db-41a1-bb4e-886a8275f1dc","keyword":"声学法测量","originalKeyword":"声学法测量"}],"language":"zh","publisherId":"clgc200511013","title":"声学法测量复合绝缘子弹性常数","volume":"","year":"2005"},{"abstractinfo":"首先用Kroner模型计算了具有丝织构的TiN薄膜的弹性矩阵。 当材料具有较强的丝织构时, 材料弹性矩阵的对称关系将发生变化, 得到的弹性矩阵与各向同性同种材料的弹性矩阵相差很大, 相同分量的值一般相差在13~20  GPa之间。 然后计算了TiN薄膜的弹性常数曲线随ψ角的分布。 当应力测试方向不同时, 即使是同一晶面, 弹性常数也会产生差异, 而且弹性常数随ψ角的分布在低ψ角区发生了弯曲。 计算的TiN薄膜X射线弹性常数曲线的弯曲情况与实测的PVD TiN薄膜应力测试曲线相似。","authors":[{"authorName":"张铭","id":"4fffc435-2506-4c5f-9fc3-84758fff9a8f","originalAuthorName":"张铭"},{"authorName":"何家文","id":"b6457329-5a85-4526-b89b-2ee571eae31c","originalAuthorName":"何家文"}],"doi":"","fpage":"198","id":"0b061840-9404-4993-a049-f04cfbf378d4","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5391dd5d-c03e-44ad-bb91-13b4e7114a07","keyword":"弹性矩阵","originalKeyword":"弹性矩阵"},{"id":"f505523a-8207-46d2-8028-d4dd0291e246","keyword":"丝织构","originalKeyword":"丝织构"},{"id":"3eec206b-0a4b-4144-beab-c91a55c1b865","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"5f7b214b-cc98-4e72-a251-2eab22c37b28","keyword":"X射线衍射","originalKeyword":"X射线衍射"}],"language":"zh","publisherId":"zgysjsxb200102008","title":"用Kroner模型计算取向薄膜的弹性矩阵与X射线弹性常数","volume":"11","year":"2001"},{"abstractinfo":"提出了碳纤维为复合结构的观点。根据复合材料力学性能的细观力学分析理论及连续纤维增强的单层板理论,结合碳纤维的微观结构特点,研究了碳纤维实际弹性常数与结晶度、微纤维取向、孔隙状态等的关系,得到了分析方法和计算方法,找出了影响弹性常数的主要因素,给出了理论分析方法和确定的计算公式。理论计算值与实验结果具有良好的一致性。揭示出孔隙密度、微纤维尺寸、微纤维取向、结晶度等对碳纤维弹性常数的决定关系,为碳纤维生产工艺的改进提供了理论依据。","authors":[{"authorName":"边文凤","id":"60d9949d-f637-426b-a75a-d1e903566632","originalAuthorName":"边文凤"},{"authorName":"李书乡","id":"5397c295-65e7-4333-8f59-08a25f2e4789","originalAuthorName":"李书乡"},{"authorName":"刘清田","id":"5143e3d3-f8ad-4682-8746-5a1c4b1012a0","originalAuthorName":"刘清田"}],"doi":"","fpage":"212","id":"1687fc37-cd61-4964-a95b-2de363c0b1f7","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ca6ea884-07c7-4d4c-9ae7-54b4723bcace","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"37019f3b-fda5-40e5-ad84-55c4b0032e22","keyword":"微纤","originalKeyword":"微纤"},{"id":"ef7f0f23-ffe8-4882-b0b5-ef96ecd25b79","keyword":"弹性常数","originalKeyword":"弹性常数"},{"id":"d92094fa-8ad5-47a8-a3aa-e89cd69a6740","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d6c46fd3-f566-433e-a5ff-a2003df70495","keyword":"细观力学","originalKeyword":"细观力学"},{"id":"f5139420-b159-4f4c-bc89-6f73e56fcf4d","keyword":"微观复合法","originalKeyword":"微观复合法"}],"language":"zh","publisherId":"fhclxb201201032","title":"碳纤维弹性常数的微观复合法","volume":"29","year":"2012"},{"abstractinfo":"复合材料工程常数的精确测试是合理有效开展复合材料结构力学分析与评估的基础.采用埋入式光纤光栅测试技术对复合材料结构应变特征进行测量,可有效获取复合材料的工程常数,如弹性模量、泊松比等.本文将光纤光栅与引伸计、应变片的单向应变测试结果进行了对比,得出不同测试方法下弹性模量的结果,验证了光纤光栅测试方法的可靠性和有效性.进一步通过在复合材料试件内部分别铺设横向及纵向的光纤光栅,对复合材料试件的泊松比进行了测试,并与应变片的测试结果进行了对比.试验结果表明,光纤光栅相对于应变片测试灵敏度更高,测得的泊松比数值更为稳定.","authors":[{"authorName":"王凯歌","id":"40a20d4d-5194-49af-aefa-dd579474249b","originalAuthorName":"王凯歌"},{"authorName":"梅志远","id":"8e8b3d5e-0877-4e0c-b8dd-da4d5d34583b","originalAuthorName":"梅志远"}],"doi":"","fpage":"35","id":"18579b72-ad59-4cb1-b49f-a3ba3a670f62","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"7772b036-722d-4e0a-8503-88bd01c641df","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"4d53d640-2d44-449e-b747-f2d819853c58","keyword":"光纤光栅","originalKeyword":"光纤光栅"},{"id":"99c6dd2b-7f7f-4ec6-8453-dd42407902e5","keyword":"工程常数","originalKeyword":"工程常数"}],"language":"zh","publisherId":"blgfhcl201301007","title":"复合材料层合板工程常数的光纤光栅测试与分析","volume":"","year":"2013"},{"abstractinfo":"根据织物增强复合材料的几何特征参数,采用三维卷曲模型建立了不同机织方式的织物增强复合材料代表性体积单元的几何模型;基于复合材料宏观有效模量的定义,对细观模型施加6组独立的均匀应变边界条件,建立相应的有限元模型,分析得到相应的细观应力场结果,再计算出织物增强复合材料的工程弹性常数.结果表明:有限元预测的结果与试验结果值吻合较好,验证了预测方法的有效性.","authors":[{"authorName":"张赋","id":"5fa9231b-4f23-4aa1-991c-076fbb8c4842","originalAuthorName":"张赋"},{"authorName":"李旭东","id":"33cff857-2c8e-4722-9e2f-96df2bb8aab3","originalAuthorName":"李旭东"}],"doi":"","fpage":"82","id":"c4ff9e95-daae-4e0d-978a-40f5cd45ac96","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"b447d188-cdc4-4b15-9e37-b84dff6742fc","keyword":"织物增强复合材料","originalKeyword":"织物增强复合材料"},{"id":"669178b3-2dd8-4544-bf44-f9df87f0dae5","keyword":"代表性体积单元","originalKeyword":"代表性体积单元"},{"id":"54656c35-b52c-4611-85b1-451e8aa2247f","keyword":"弹性常数","originalKeyword":"弹性常数"},{"id":"92844386-3771-4226-8a77-9aa6f04e110b","keyword":"有限元分析","originalKeyword":"有限元分析"}],"language":"zh","publisherId":"jxgccl201404017","title":"织物增强复合材料弹性常数的有限元法预测","volume":"38","year":"2014"},{"abstractinfo":"指出了直接测量脆性材料弹性常数带来的困难,提出了复合测量法,详述了数据处理过程,为测量弹性常数找到了一种更为精确的新方法,在此基础上编制了C程序.","authors":[{"authorName":"杨连贺","id":"73a90cd3-e728-4d09-8ad7-deb783d874fd","originalAuthorName":"杨连贺"},{"authorName":"王瑞","id":"38926d72-f244-4870-a063-6bff9ac38879","originalAuthorName":"王瑞"}],"doi":"10.3969/j.issn.1001-4381.2000.08.009","fpage":"31","id":"30a0b386-531f-4a54-ad24-d9e52d5a8b50","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"a11bc157-fa86-4ed4-82bd-8bcd61f93b61","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"9a421e77-6c16-4b3f-826d-7eade208f790","keyword":"弹性常数","originalKeyword":"弹性常数"},{"id":"43c16082-b10c-4bc4-a4dd-3ee2ed8606ce","keyword":"待定系数","originalKeyword":"待定系数"},{"id":"386b7f10-f21a-44f3-92a1-5ae265344295","keyword":"线段延伸","originalKeyword":"线段延伸"}],"language":"zh","publisherId":"clgc200008009","title":"脆性材料弹性常数的复合测量法及程序实现","volume":"","year":"2000"},{"abstractinfo":"对近几年来公开发表的缝合复合材料弹性常数的细观力学模型进行了分析比较.通过计算对比了铺层纤维面内弯折、正弦波状弯曲、多项式描述纤维弯曲三个典型的缝合复合材料弹性常数的细观力学分析模型.结果表明,采用面内纤维弯折假设的弹性常数分析模型对缝纫参数的改变不敏感;采用面内纤维弯曲假设的模型对缝纫参数改变敏感,不同模型得到的弹性常数随缝纫参数变化趋势几乎是相同的.但是,假设纤维在针脚附近只有部分纤维发生弯曲比假设纤维全部发生弯曲得到的结论更合理.","authors":[{"authorName":"于芳","id":"84d66570-4139-4997-813f-1a93c1a32dce","originalAuthorName":"于芳"},{"authorName":"燕瑛","id":"6207e1ce-b58b-4815-b813-3ff325061cd1","originalAuthorName":"燕瑛"}],"doi":"10.3969/j.issn.1007-2330.2007.01.009","fpage":"36","id":"b0bce219-00e1-435c-8a2a-294e29bc77b0","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"106dcf5b-ad6f-4eb4-b7f4-fbfd014d8715","keyword":"缝合复合材料","originalKeyword":"缝合复合材料"},{"id":"063756b4-e927-4355-9fc5-c236f7745ae1","keyword":"弹性常数","originalKeyword":"弹性常数"},{"id":"957206fe-c71e-4af5-a427-338a7c3ae4ec","keyword":"细观力学模型","originalKeyword":"细观力学模型"}],"language":"zh","publisherId":"yhclgy200701009","title":"缝合复合材料弹性常数细观力学模型的分析比较","volume":"37","year":"2007"},{"abstractinfo":"通过对复合材料层合板等效弹性模量的反演推算,得到单向板的弹性常数.当层合板中0°和90°铺层比例不等时,通过直接反推法得到唯一解,即单向板的弹性常数;但是当层合板中0°和90°铺层比例相等时,运用反推法得到无穷多组解,此时添加额外已知条件可确定唯一解.由算例分析得出:对于均衡层合板该方法预测结果较准确;但对于非均衡层合板预测结果误差偏大.复合材料弹性模量的反演推算充分考虑了材料因加工缺陷引起的随机性,所得结果能更真实地反映单向板的弹性常数.","authors":[{"authorName":"肖颖","id":"1e2ebfe1-d537-419e-989c-194077da1c92","originalAuthorName":"肖颖"},{"authorName":"王佩艳","id":"d04b6dc6-ab3d-4ee9-b2fb-88d6ca2ef40e","originalAuthorName":"王佩艳"},{"authorName":"董永朋","id":"bf1b2be9-7c6b-4b25-b075-6be877890160","originalAuthorName":"董永朋"}],"doi":"10.14136/j.cnki.issn 1673-2812.2015.05.021","fpage":"726","id":"87a280ad-9795-49eb-ab25-9cd264d5c655","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"75f50279-3704-44a5-827b-fa59de08f028","keyword":"等效弹性模量","originalKeyword":"等效弹性模量"},{"id":"eb9bbc93-ece9-4116-bc92-f23d4ffdf994","keyword":"材料弹性常数","originalKeyword":"材料弹性常数"},{"id":"bcdc9077-0024-4f56-8cd4-37e1af9fc10d","keyword":"均衡层合板","originalKeyword":"均衡层合板"},{"id":"e6fb3d2f-ff4c-4b6c-ab5d-b3f1889514b4","keyword":"铺层比例","originalKeyword":"铺层比例"}],"language":"zh","publisherId":"clkxygc201505021","title":"复合材料性能反演单向板弹性常数的方法","volume":"33","year":"2015"},{"abstractinfo":"推导出几何平均模型并使用这个模型计算了Cu和TiN的弹性矩阵和x射线弹性常数,计算的结果处于Voigt和Reuss模型所定义的多晶材料弹性常数的有效区间内,与Hill、Kroner模型的计算结果的最大相对误差小于4%,TiN[422]方向杨氏模量的计算值为424.3GPa,与其实验值411土45Gpa基本一致.","authors":[{"authorName":"张铭","id":"e5fc71f1-b2fc-4e0f-9c64-c92556c56486","originalAuthorName":"张铭"},{"authorName":"郑茂盛","id":"2f0439a1-aec6-48f5-a5b0-96af0abc073e","originalAuthorName":"郑茂盛"},{"authorName":"何家文","id":"e1ce045d-472e-459c-b4d6-2727b1cbcf54","originalAuthorName":"何家文"}],"doi":"10.3321/j.issn:1005-3093.2001.05.017","fpage":"577","id":"739159b0-d95e-4abe-9f0d-c2c194c76dc1","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"760c6eb6-6f3f-4ec8-8f0f-caab033da2cb","keyword":"几何平均模型","originalKeyword":"几何平均模型"},{"id":"d2379371-285c-4fd1-ae82-f30386bfb375","keyword":"X射线弹性常数","originalKeyword":"X射线弹性常数"},{"id":"5775e14b-3405-400a-8d36-c2e71a91167d","keyword":"弹性矩阵","originalKeyword":"弹性矩阵"}],"language":"zh","publisherId":"clyjxb200105017","title":"用几何平均模型计算多晶材料的X射线弹性常数","volume":"15","year":"2001"}],"totalpage":1321,"totalrecord":13205}