{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用反应-蔓延烧结法制备了钼质量分数分别为5%、10%、20%的Mo增强铜基复合材料.采用X射线衍射仪、光学显微镜、扫描电镜和透射电镜分析了复合材料的物相及微观组织形貌,并研究了钼添加量对复合材料力学性能、导电性能、热膨胀系数的影响.结果表明:该工艺制得的复合材料基体晶粒尺寸均达到纳米级,致密度均达到90%以上,硬度较纯铜提高40%以上,导电性能良好(72%IACS以上).随着钼质量分数的增加,复合材料的硬度增加,致密度、电导率及热膨胀系数下降.当钼质量分数为20%时,复合材料的致密度为91.88%,电导率为72%IACS,硬度是纯铜的2倍,热膨胀系数较纯铜降低了13%,综合性能最佳.复合材料硬化的主要机理为强化相钼和铜基体弹性模量差别引起的模量硬化.","authors":[{"authorName":"郭铁明","id":"22c80886-f997-4b00-bdac-99b132f49292","originalAuthorName":"郭铁明"},{"authorName":"付迎","id":"c5a8fbed-5d4a-4417-89a6-cc819e4393e4","originalAuthorName":"付迎"},{"authorName":"贾建刚","id":"6c74fb1b-c09b-4fae-bc62-6dbd345366a3","originalAuthorName":"贾建刚"},{"authorName":"唐中杰","id":"9849f01f-642a-4803-baa8-6eb08b9b2d9e","originalAuthorName":"唐中杰"},{"authorName":"金硕","id":"57bb22dd-1c2b-435a-bb16-2e7905c33b5b","originalAuthorName":"金硕"},{"authorName":"吉瑞芳","id":"1cd27c50-8a4a-41c0-84a5-e98128fb84df","originalAuthorName":"吉瑞芳"}],"doi":"","fpage":"6","id":"c5de5bfa-670b-4bba-acce-5192262ea978","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"29abf86c-c804-4cf0-81f9-2f87a66159b2","keyword":"反应-蔓延烧结","originalKeyword":"铝热反应-自蔓延烧结"},{"id":"ce742581-fb54-434a-b2a9-9cbe51770da8","keyword":"Mo","originalKeyword":"Mo"},{"id":"60227e8a-dc1c-4727-ae61-3051af46be52","keyword":"铜基纳米复合材料","originalKeyword":"铜基纳米复合材料"},{"id":"80cba55f-2b62-4701-962d-e166444b1c3c","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"3fc38097-acbb-4ebb-bcde-37bc3477edaf","keyword":"物理性能","originalKeyword":"物理性能"}],"language":"zh","publisherId":"jsrclxb201508002","title":"反应法制备Mo增强铜基纳米复合材料的组织与性能","volume":"36","year":"2015"},{"abstractinfo":"将铝粉和高碳铬铁粉末按80∶20原子比混合压制成坯,并对压坯进行激光诱导蔓延烧结,利用金相显微镜、X射线衍射仪等设备,表征烧结合金显微组织及物相结构;采用硬度计、磨粒磨损机及电化学腐蚀仪等,表征烧结合金宏观性能.研究合金表层区、中层区和底层区组织及性能变化规律.结果表明:烧结合金物相主要有α-Al、Fe2AlCr、Al13Cr2、Al13Fe4及Al2O3等,且烧结合金中层区富Al相Al13Cr2和Al13Fe4的含量最多,α-Al相含量最少.烧结合金中层区显微组织最细小均匀;硬度值最高,为817.5HV;磨损率最低,为0.08 mg/mm2;耐蚀性能最好,钝化电流最小,为115.8μA/cm2.","authors":[{"authorName":"李刚","id":"d5712c5c-3119-443b-9ea7-7b0743feb74d","originalAuthorName":"李刚"},{"authorName":"张井波","id":"79983fd2-7e71-458a-802e-8ea902933f80","originalAuthorName":"张井波"},{"authorName":"张明","id":"0371294b-65cb-47d2-afe7-6729f8955733","originalAuthorName":"张明"},{"authorName":"刘云婷","id":"273f8983-b3e1-4ee5-be3a-861dc00217e1","originalAuthorName":"刘云婷"},{"authorName":"安亚君","id":"b336b7bf-a28f-4663-9b86-68a6e0b2d923","originalAuthorName":"安亚君"}],"doi":"10.11896/j.issn.1005-023X.2016.18.022","fpage":"104","id":"7d875ecc-06bf-4836-8486-43c2c191cd4e","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d1b000a4-9831-4aa8-933c-b6ad5d0292ad","keyword":"激光诱导","originalKeyword":"激光诱导"},{"id":"1f32e2b6-e5dd-429b-8a30-f4366e55369a","keyword":"蔓延烧结","originalKeyword":"自蔓延烧结"},{"id":"a38a5195-1dab-4a0f-9b8a-3a1dbbbf4bee","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"f796630d-046d-445b-a1e1-8e0eff1264d3","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"cldb201618022","title":"激光诱导蔓延烧结Al80-(Fe-Cr)20合金组织及性能研究","volume":"30","year":"2016"},{"abstractinfo":"采用不同激光输出功率对掺杂一定含量钨精矿粉末Fe40-A60粉末压坯进行激光点燃蔓延烧结,利用XRD,SEM,硬度、磨损和耐蚀性测试等表征手段,分析研究引燃功率对烧结合金微观组织结构及宏观性能的影响.结果表明:合金组织为条状组织,且随着引燃功率的增加,组织愈加均匀;产物物相主要为AlCrFe2,AlFe,FeAl3,Al86Fe14,Al5Fe2及硬质颗粒相WO3.当引燃功率为1 100W,合金的烧结密度最大为4.47 g/cm3,孔隙率最低为4.41%;烧结合金的耐蚀性能最佳,合金的致钝电流密度最小为79.8 mA/cm2,维钝电流密度也最小为0.37 mA/cm2;烧结合金硬度达到最大值,a层为1 309.7HK,b层为1 003HK.当引燃功率为1000W,烧结合金的a,b两层相对磨损量最低为0.06,0.05 mg/mm2.","authors":[{"authorName":"李刚","id":"b124fe06-3386-4fbf-86c7-b853a4df2707","originalAuthorName":"李刚"},{"authorName":"于君娜","id":"632b51e5-f42a-45c9-80cd-3dd6613a7594","originalAuthorName":"于君娜"},{"authorName":"罗崇辉","id":"83ab22fb-1e74-4e1b-ab7d-ad2da6a74b55","originalAuthorName":"罗崇辉"}],"doi":"","fpage":"57","id":"35ba68fe-ce6f-4b1f-9f65-502d8f9b9dd5","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"83817806-c431-4d2c-95a8-31659270ed16","keyword":"激光","originalKeyword":"激光"},{"id":"66ff243e-a5b5-4252-8ab3-5b2bfa98124a","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"05123dcc-02c9-4248-9605-96c790b5ba17","keyword":"钨精矿粉","originalKeyword":"钨精矿粉"},{"id":"4f9d9c4d-5092-449d-9b04-33eef1b798bb","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"769a2342-47fa-447d-94be-43daa503754f","keyword":"力学特性","originalKeyword":"力学特性"}],"language":"zh","publisherId":"bqclkxygc201301017","title":"Fe40-Al60掺杂钨精矿粉激光蔓延烧结合金组织及性能研究","volume":"36","year":"2013"},{"abstractinfo":"对Fe40A160粉末压坯进行激光点燃蔓延烧结,利用XRD、金相、硬度等表征手段,分析烧结合金表层区、中部区和底部区的微观组织结构及宏观性能,并采用有限元分析方法,对Fe40Al60激光烧结过程的温度场进行数值模拟,得到了烧结过程温度场分布云图和路径图.结果表明:表层区产物相主要为FeAl、A12O3,中部区产物相为Fe3Al、FeAl、A12O3,底层区产物相为Fe3Al、Al2O3和Fe;烧结合金表层区组织为条状,中部区组织为胞状,底层区组织为针状;表层区硬度HV为9010MPa,中间层硬度HV为10 050MPa,底层区硬度HV为9650MPa.模拟结果表明:l0s时,表层区温度最高为1150 K,中部区温度为894.033 K,底层区温度最低为820.979 K.表明试样各区域物相与该区温度场模拟结果相一致.","authors":[{"authorName":"李刚","id":"f37c6867-cf4e-4f40-acac-4edce0207312","originalAuthorName":"李刚"},{"authorName":"许新颖","id":"debdaf19-c77a-499e-9232-2cdcd3138a92","originalAuthorName":"许新颖"},{"authorName":"葛少成","id":"516036f4-0a78-48f7-b68d-25d67a3338f0","originalAuthorName":"葛少成"}],"doi":"","fpage":"2873","id":"b402a6fe-601b-4ed8-88cf-33dbe42e9ee9","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"46f64a4c-e86f-4030-bc5b-0e01fcca022d","keyword":"Fe-Al金属间化合物","originalKeyword":"Fe-Al金属间化合物"},{"id":"6869b342-f9cc-40ac-b296-2d820f096e9e","keyword":"激光蔓延烧结","originalKeyword":"激光自蔓延烧结"},{"id":"46e379e0-feb1-4b41-9a70-00b4c4ae7af8","keyword":"ANSYS软件","originalKeyword":"ANSYS软件"},{"id":"5a082b5b-0b63-42ef-b498-92b75de715fa","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"xyjsclygc201611023","title":"激光蔓延烧结Fe-Al合金及其成型过程温度场数值模拟","volume":"45","year":"2016"},{"abstractinfo":"将Ni粉与Al粉按原子比3∶1配比均匀混合,并压制成坯.采用激光诱发引燃蔓延,分析激光诱导蔓延成形机理及成形过程,确定模型尺寸和单元类型,建立数学模型.利用ANSYS有限元分析软件,对烧结过程温度场进行数值模拟,计算得到模型烧结反应10s后的温度场模拟云图和节点温度随时间变化的曲线图.模拟表明:10 s后模型顶部温度最高为1127 K,底部温度最低为844.236 K.模型a层(距顶部4 mm)烧结产物为Ni3Al,b层蔓延产物为Ni3Al和NiAl的混合物,c层(距底部8mm)蔓延产物为NiAl,最后采用XRD对实际试样进行物相结构分析,表明试样各区域物相与该区温度场模拟结果一致.","authors":[{"authorName":"李刚","id":"2b4c07d2-9c0b-4306-8ac7-aa8ba252d0bc","originalAuthorName":"李刚"},{"authorName":"金红梅","id":"d5b7099f-b386-4daa-9cae-361e0f097abc","originalAuthorName":"金红梅"},{"authorName":"韩凤","id":"42abcecc-56b5-4466-924b-b122245e3250","originalAuthorName":"韩凤"},{"authorName":"沈宇","id":"24dd2b47-5779-4fce-9895-e0e064224edd","originalAuthorName":"沈宇"},{"authorName":"沈金泽","id":"43458e6f-6cc6-4d11-a709-dfe2f78a75d0","originalAuthorName":"沈金泽"},{"authorName":"王妍","id":"3048732c-bbd9-4203-942b-2943151b4c65","originalAuthorName":"王妍"}],"doi":"","fpage":"218","id":"4d3c0661-d8d1-4e6c-8fe0-68a71a820469","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"86b988b3-dbfb-4f21-8944-23da1879d32e","keyword":"激光烧结","originalKeyword":"激光烧结"},{"id":"86f500aa-5782-4c00-b116-a740bad22666","keyword":"蔓延合成","originalKeyword":"自蔓延合成"},{"id":"0c03b3d4-b354-430c-ab5a-c89378350617","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"ed9d4d41-5543-4c53-9195-6c2d3f065461","keyword":"ANSYS","originalKeyword":"ANSYS"}],"language":"zh","publisherId":"jsrclxb201403040","title":"Ni75Al25激光诱导蔓延烧结合金温度场数值模拟","volume":"35","year":"2014"},{"abstractinfo":"为获得高性能Fe/Al合金复合材料,用激光引燃蔓延高温合成技术掺杂0~5.0%钨精矿粉末制备了Fe/Al合金,采用XRD、SEM、孔隙率、硬度、耐磨性等表征和测试手段,分析了钨精矿粉含量对烧结合金微观组织结构及性能的影响.结果显示:随钨精矿粉含量增加,Fe/Al合金试样中生成的Fe7W6明显增多,氧化物硬化相WO3含量降低,Fe/Al合金试样的烧结密度先增大后减小,孔隙率先降低后升高,致密性先显著提高后下降.当钨精矿含量为1.0%时,生成了W03、Fe7W6等物相,烧结合金内呈现出大量针状组织,烧结合金的烧结密度最大,为4.276 5g/cm3,孔隙率最小,为12.2%,烧结合金显微硬度最高,为956 HK,合金耐磨性最好,磨损率为0.05 mg/mm2.","authors":[{"authorName":"杨森","id":"5d97b40c-3484-40c8-808d-114dfb01420f","originalAuthorName":"杨森"},{"authorName":"杨绍斌","id":"99eda64e-c193-4219-ad4c-48345f708982","originalAuthorName":"杨绍斌"},{"authorName":"董伟","id":"e6e65083-2bd9-46ac-9cbf-8e1ef5a83322","originalAuthorName":"董伟"}],"doi":"","fpage":"1","id":"a952eb01-4307-441c-8e5d-782671ef5b41","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7a2c1fb6-c3ec-4a8c-9a3b-49031227fce5","keyword":"Fe/Al烧结合金","originalKeyword":"Fe/Al烧结合金"},{"id":"b50f7fe3-e9fc-4278-b10b-92260e8d3fea","keyword":"钨精矿粉","originalKeyword":"钨精矿粉"},{"id":"46d4fd49-b95c-426f-9869-fd4d6248a984","keyword":"激光蔓延烧结","originalKeyword":"激光自蔓延烧结"},{"id":"9ce515bf-18b3-4bc0-b224-3c3fa91bf5e3","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"9a872d7a-365f-4e89-80c5-5848c2739c01","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"clbh201603001","title":"钨精矿粉含量对激光蔓延烧结Fe/Al合金组织及性能的影响","volume":"49","year":"2016"},{"abstractinfo":"通过对掺杂钨精矿粉末的Fe40Al60粉末压坯进行激光点燃蔓延烧结,制备原位自生颗粒增强复合材料.利用表征手段分析钨精矿粉末添加量对烧结合金显微组织结构及宏观性能的影响规律.结果表明,随钨精矿粉含量的增加,合金显微组织由片状变为颗粒状,烧结合金物相主要为A12O3、FeAl、Fe3Al、Fe7W6、W及硬质颗粒相WO3.当钨精矿粉末含量为1%时,烧结合金密度最大,为4.27 g/cm3;孔隙率最小,为12.2%;硬度最高,上表层区达到1050 HV,中部区达到1818 HV,底层区达到1232 HV;合金磨损率最低,表层区为0.99 mg/mm2,中部区为0.59 mg/mm2,底层区为0.75 mg/mm2;合金耐蚀性能最好,腐蚀电流密度为116 μA/cm2.","authors":[{"authorName":"李刚","id":"ccad0128-ad5e-4395-836b-7cd6ab6f63e2","originalAuthorName":"李刚"},{"authorName":"许新颖","id":"6978e904-02ef-4bf1-9195-14acf6d79162","originalAuthorName":"许新颖"},{"authorName":"葛少成","id":"f769c6fa-59d5-4b35-befd-b20b6e789da8","originalAuthorName":"葛少成"},{"authorName":"高鹏","id":"30e49356-4ccf-4cf7-9560-31a8d5c93eb6","originalAuthorName":"高鹏"},{"authorName":"王智明","id":"da6dfa5a-6450-4d06-bf67-fb259c9f8161","originalAuthorName":"王智明"}],"doi":"","fpage":"11","id":"b031f70d-5915-429f-9589-b5072930d310","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6f890fda-e521-4df6-a6a5-fed1bc18f4b7","keyword":"Fe-Al金属间化合物","originalKeyword":"Fe-Al金属间化合物"},{"id":"ea899282-42a8-4acc-9b0b-1e609226fb3c","keyword":"激光烧结","originalKeyword":"激光烧结"},{"id":"737a0b4b-8180-4472-93f9-26d5fbdb35aa","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"fee86927-44f4-4af4-b5eb-d1f3f6b95da2","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"jsrclxb201411003","title":"不同钨精矿粉末含量对Fe-Al系激光蔓延烧结合金组织性能的影响","volume":"35","year":"2014"},{"abstractinfo":"以金红石、钛精矿、Al为原料采用蔓延法制备出低氧高钛铁.研究相关反应体系的热力学及动力学问题,考察配料比、熔渣类型、发热剂等对蔓延过程的影响,采用XRD,SEM以及化学分析等技术对高钛铁合金进行表征.结果表明:反应体系的绝热温度大于1800 K,反应能自我维持进行;Al还原TiO2反应的表观活化能为93.676kJ·mol-1,反应级数为0.01,Al还原TiO2和Fe2O3的表观活化能为300.740 kJ·mol-1,反应级数为1.20;合金主要由TiFe2、TiFe以及Fe2TiO0.13等钛铁低氧固溶体相组成,夹杂相存在是导致合金中氧含量高及微观缺陷存在的直接原因;合金中钛、、铁、硅含量分别为:60.0%~62%、7.0%~11.0%、21.0%~25.0%以及3.0%左右;合金中的氧被有效去除,最低为1.85%.","authors":[{"authorName":"豆志河","id":"af16174c-e144-41c9-a425-3de905771f25","originalAuthorName":"豆志河"},{"authorName":"张廷安","id":"d34a43b8-1e97-4843-8859-17a14581a5bc","originalAuthorName":"张廷安"},{"authorName":"张含博","id":"b2ecb12b-5fa0-4258-bfba-cec3bfc23467","originalAuthorName":"张含博"},{"authorName":"张志琦","id":"a4b1648d-d837-469e-9ac3-8db77407f643","originalAuthorName":"张志琦"},{"authorName":"牛丽萍","id":"93586872-4706-488b-b0da-b8ec445fb152","originalAuthorName":"牛丽萍"},{"authorName":"赫冀成","id":"a10c2957-0c96-4814-97a4-67267ac06a13","originalAuthorName":"赫冀成"}],"doi":"","fpage":"899","id":"fe7601cd-87ad-4896-891f-1ccaed44e7de","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"db3e3f62-2ca4-4084-8396-a003f9df07fd","keyword":"蔓延","originalKeyword":"铝热自蔓延"},{"id":"4fb84b89-aaff-4c4b-ad24-5cbeb218ecce","keyword":"低氧高钛铁","originalKeyword":"低氧高钛铁"},{"id":"769da063-d852-42f6-9217-38889a099b4c","keyword":"绝热温度","originalKeyword":"绝热温度"},{"id":"17fa13e9-584a-4a49-89a4-b4747877b74e","keyword":"扫描电镜","originalKeyword":"扫描电镜"}],"language":"zh","publisherId":"xyjsclygc201205031","title":"蔓延法制备低氧高钛铁合金及表征","volume":"41","year":"2012"},{"abstractinfo":"反应蔓延高温合成反应的一个分支,它采用成本低廉的天然氧化物作原料,比元素直接合成材料具有更显著的经济效益.通过对工业和实验中最具代表性的两种反应--铝热剂与镁反应研究及应用的介绍,阐述了反应的发展状况,并指出了反应研究的不足和有待进一步研究的若干问题.","authors":[{"authorName":"张鹏林","id":"e3ad3b88-3510-4f1a-b449-63136b9b5aa0","originalAuthorName":"张鹏林"},{"authorName":"夏天东","id":"60eed2e8-8fff-4e2a-b69f-d48fc3848422","originalAuthorName":"夏天东"},{"authorName":"尹燕","id":"42cd9687-6941-4b95-b932-7c61288d281a","originalAuthorName":"尹燕"},{"authorName":"赵文军","id":"760d3fb1-1ca2-49c9-8d12-8b14e708e88e","originalAuthorName":"赵文军"},{"authorName":"刘天佐","id":"65f607df-2f67-4702-a192-14b55b1654e1","originalAuthorName":"刘天佐"}],"doi":"","fpage":"58","id":"60021bb5-d466-4481-bd04-432ebc09fe27","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7cad5190-3136-451e-a4db-4e7498373b35","keyword":"蔓延","originalKeyword":"自蔓延"},{"id":"0b4442fa-db7c-43ac-aca9-8bdc1321bab5","keyword":"反应","originalKeyword":"热剂反应"},{"id":"34e1733d-b0f4-4dc4-b6a6-9e88187abcc4","keyword":"铝热剂","originalKeyword":"铝热剂"},{"id":"187b2cff-40db-4422-9f42-206534018915","keyword":"镁剂","originalKeyword":"镁热剂"},{"id":"257706af-c32b-4713-82e0-c7d0dc152b45","keyword":"SHS离心法","originalKeyword":"SHS离心法"}],"language":"zh","publisherId":"cldb200710016","title":"反应蔓延高温合成材料研究进展","volume":"21","year":"2007"},{"abstractinfo":"对Mo-W-Si三元体系蔓延爆合成MoSi2-WSi2复合材料的反应吉布斯自由能、反应生成焓和绝热温度进行了理论分析和实验研究,并利用X射线衍射分析和扫描电镜及微区成分分析(EDAX)技术对产物进行了相组成和微区成分分析.结果表明:在1685 K(Si熔点)时,MoSi2和WSi2的反应生成焓最大,分别为234.645 KJ/mol和195.670 KJ/mol.当初始温度为1685 K时,体系所有产物均完全熔融.利用蔓延爆合成可制备纯净的MoSi2-WSi2复合材料.MoSi2和WSi2以固溶体(Mox,W1-x)Si2的形式存在,但每个晶粒内的成分并不均匀.","authors":[{"authorName":"彭可","id":"a62a7579-b398-4ed9-957b-f15758708891","originalAuthorName":"彭可"},{"authorName":"易茂中","id":"3c2f2ec9-8413-4e01-9ea9-cac1113b5f86","originalAuthorName":"易茂中"},{"authorName":"冉丽萍","id":"de2052a8-6255-4267-9f0d-99130f7d3c2c","originalAuthorName":"冉丽萍"}],"doi":"","fpage":"554","id":"b2374264-8e2d-404a-bfce-36b74abe20a1","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"cd263684-e0ca-42fb-8f04-d640174485de","keyword":"MoSi2-WSi2复合材料","originalKeyword":"MoSi2-WSi2复合材料"},{"id":"2808ea10-0fc7-419f-8a0b-98987de54a7b","keyword":"蔓延爆合成","originalKeyword":"自蔓延热爆合成"},{"id":"62ba2fb0-9b3e-4417-be9e-380a45ecec03","keyword":"反应热力学","originalKeyword":"反应热力学"},{"id":"2660fb27-bfde-451e-a5ec-a38802b5b064","keyword":"绝热温度","originalKeyword":"绝热温度"}],"language":"zh","publisherId":"xyjsclygc200604011","title":"MoSi2-WSi2复合材料蔓延爆合成反应热力学","volume":"35","year":"2006"}],"totalpage":6553,"totalrecord":65527}