{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用脉冲喷射电沉积方法制备了纳米镀层,用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)等方法研究了镀层的生长形貌和微观结构,并考察了脉冲电流密度对镀层微观结构如晶粒尺寸、织构等的影响.结果表明:镀层内表面(基体一侧)具有比外表面(镀液一侧)更为精细的晶粒结构,说明随着厚度的增加,镀层中的晶粒逐渐粗化.随着电流密度从45 A/dm2增加到180 A/dm2,镀层中晶粒生长的择优取向由(111)织构逐渐转变为强(220)织构.当电流密度从45 A/dm2增加到120 A/dm2时,镀层平均晶粒尺寸逐渐减小;而进一步增加电流密度到180 A/dm2,镀层晶粒尺寸又会有轻微的增大.","authors":[{"authorName":"江山","id":"14072bd2-df41-4c03-999f-83e923432606","originalAuthorName":"江山"},{"authorName":"潘勇","id":"6a8e4361-2f33-46c3-a517-38076698a8dc","originalAuthorName":"潘勇"},{"authorName":"唐甜","id":"0401dfe1-adeb-4fe1-b531-6dc8621edc48","originalAuthorName":"唐甜"},{"authorName":"周益春","id":"80a1b724-2a8b-4500-a2d1-faca0d0dcf89","originalAuthorName":"周益春"}],"doi":"10.3969/j.issn.1001-1560.2007.03.016","fpage":"49","id":"1dff78ff-c983-4273-9e98-f2842ecdadb7","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"064ae5aa-ec61-4787-b0cd-098c63d3f381","keyword":"脉冲喷射电沉积","originalKeyword":"脉冲喷射电沉积"},{"id":"8b23676f-930a-4e5f-94ee-1e3d41c3e4f0","keyword":"纳米镀层","originalKeyword":"纳米晶镍镀层"},{"id":"3bc2c6c9-c93b-4bb7-af6c-7a190ca73f8b","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"30d96af2-f06c-4f61-a237-9fdfe0dc423f","keyword":"织构","originalKeyword":"织构"},{"id":"6d000827-dbf7-44cf-b3e7-c49bfe990283","keyword":"平均晶粒尺寸","originalKeyword":"平均晶粒尺寸"}],"language":"zh","publisherId":"clbh200703016","title":"用脉冲喷射电沉积法制备纳米镀层","volume":"40","year":"2007"},{"abstractinfo":"采用脉冲喷射电沉积方法在钢基体表面制备了纳米镀层,研究了占空比、频率、平均电流密度对镀层硬度的影响,并通过正交试验对工艺参数进行优化,用扫描电镜和X-射线衍射仪对镀层表面形貌和晶粒尺寸进行分析.结果表明,制备纳米镀层的优化工艺参数为:平均电流密度39.8 A/dm2、频率1 000 Hz和占空比20%,此时镀层最致密,硬度最高(530.6 HV),纳米平均晶粒尺寸最小(13.7 nm).","authors":[{"authorName":"王东生","id":"f7ae3fc1-90d8-4962-be53-fb8a4986971a","originalAuthorName":"王东生"},{"authorName":"黄因慧","id":"1c9b0fde-4ad4-443a-8ad2-58f9c84fbe94","originalAuthorName":"黄因慧"},{"authorName":"田宗军","id":"ea27d60c-174a-4ca1-b51b-d84db7a59ecf","originalAuthorName":"田宗军"},{"authorName":"刘志东","id":"eaa3f0fd-7db5-4fbe-b99e-bfc48e83fde8","originalAuthorName":"刘志东"},{"authorName":"朱军","id":"37c04b75-53a7-4890-96aa-3387dea76050","originalAuthorName":"朱军"}],"doi":"10.3969/j.issn.1001-3849.2008.01.004","fpage":"12","id":"ebd3b651-9b26-467e-80b0-2cdf8a8bb985","issue":"1","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"c7b4173f-5b4a-4604-b6c9-becc5ff52d8f","keyword":"脉冲电沉积","originalKeyword":"脉冲电沉积"},{"id":"bec288e3-7115-4b28-9d76-a09c433e3d25","keyword":"喷射电沉积","originalKeyword":"喷射电沉积"},{"id":"0cf98694-7c16-4efc-9a11-f61672af6bed","keyword":"纳米镀层","originalKeyword":"纳米晶镍镀层"},{"id":"639c6e24-a27e-4de6-bff3-d485b90c5606","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"fcff63e0-2bbc-42e7-b867-6b561f1de819","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"ddjs200801004","title":"脉冲喷射电沉积纳米工艺优化研究","volume":"30","year":"2008"},{"abstractinfo":"一些特殊的工件在加工过程中,镀层易起皮、脱落,镀层与基体间有一过渡层可避免这一点,这通常可通过局部热处理加以解决;而传统的扩散退火热处理中,热量是从材料外部向其内部传递,整个材料都被加热,要实现镀层与基体的界面扩散,就会不可避免地造成纳米镀层的晶粒长大;而且如果只需对材料的某个局部加热,其效率显然较低.为此,对电沉积纳米镀层与低碳钢基体进行电阻点焊试脸,考察了利用电流作用下界面接触电阻产生热量来实现镀层与基体界面原子扩散的可行性以及时镀层微观结构的影响.用X射线衍射(XRD)表征了点焊前后纳米镀层微观结构的变化;利用背散射电子像(BSE)观察界面的结构变化;用扫描电子显微镜(SEM)附带的能量色散谱(EDS)探测了界面上的原子扩散.结果表明:点焊前后纳米镀层的平均拉尺寸和织构基本保持不变;镀层和基体界面上发生了明显的原子互扩散,形成了扩散过渡层.该方法既可以促使镀层与基体界面发生原子扩散,又能保证纳米镀层晶粒不长大,为纳来晶体镀层材料的界面局部热处理提供了一种新的途径.","authors":[{"authorName":"江山","id":"5f583084-5d29-4ada-9eb7-e7ff003c1b67","originalAuthorName":"江山"},{"authorName":"潘勇","id":"d9872b98-72b9-4a3c-953f-2dd7de2ed6a1","originalAuthorName":"潘勇"},{"authorName":"王世建","id":"7e98395d-35cd-4b22-82be-39c1ebc9907c","originalAuthorName":"王世建"},{"authorName":"周益春","id":"978ffda8-0c8a-4df1-a860-104d677def7b","originalAuthorName":"周益春"}],"doi":"","fpage":"57","id":"3703fb13-9b52-493f-a995-cf6f69507a96","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"738cbad5-37ea-4d32-8384-653b77a48469","keyword":"界面局部热处理","originalKeyword":"界面局部热处理"},{"id":"2dfb7a75-1dd7-4064-a63e-7019ed4cd01b","keyword":"电阻点焊","originalKeyword":"电阻点焊"},{"id":"8cedfd84-8685-4c63-b4a5-041872373556","keyword":"纳米镀层","originalKeyword":"纳米晶镍镀层"},{"id":"0330ea01-9519-4f5a-bab2-c494853286db","keyword":"界面扩散","originalKeyword":"界面扩散"},{"id":"b8af3555-e85e-4bb3-bc0c-73b449415c4d","keyword":"晶粒长大","originalKeyword":"晶粒长大"},{"id":"a1669898-cd9d-4c8f-9b8d-cf13ba00a854","keyword":"织构","originalKeyword":"织构"}],"language":"zh","publisherId":"clbh201103018","title":"电沉积纳米层与基体界面局部电阻点焊热处理","volume":"44","year":"2011"},{"abstractinfo":"采用电刷镀的方法,通过在刷镀溶液中加入不同类型及含量的表面活性剂,在铁基体上制备出了纳米镀层.通过原子力显微镜、扫描电子显微镜观察,分析纳米镀层的二维和三维表面形貌.利用X-射线衍射仪,估算纳米镀层的晶粒平均尺寸.","authors":[{"authorName":"杜锋","id":"ae53ea8b-e443-40f2-b1ac-8eda38d6dc65","originalAuthorName":"杜锋"},{"authorName":"李","id":"70e08561-37a3-4707-be7f-b2b4b9112cc5","originalAuthorName":"李晶"},{"authorName":"高月德","id":"ecf71bdc-e136-48ee-85e6-92f409c90461","originalAuthorName":"高月德"},{"authorName":"刘先黎","id":"b89c6428-ff6a-4292-a5ea-11d1e6b07dfc","originalAuthorName":"刘先黎"}],"doi":"10.3969/j.issn.1001-3849.2008.08.010","fpage":"33","id":"3cc52320-9c6f-4c23-9909-253e3de2fc94","issue":"8","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"400c7bfd-6e7d-467f-8b6f-fc44401f50f9","keyword":"电刷镀","originalKeyword":"电刷镀"},{"id":"42a89ed5-110a-47f2-ac8d-cfc7b3298927","keyword":"纳米","originalKeyword":"纳米晶镍"},{"id":"a8d65735-6a31-4395-b0fe-c6068d093ebc","keyword":"表面活性剂","originalKeyword":"表面活性剂"}],"language":"zh","publisherId":"ddjs200808010","title":"电刷镀纳米镀层","volume":"30","year":"2008"},{"abstractinfo":"采用双向脉冲电沉积法,以糖精和1,4-丁炔二醇作为光亮剂,在钢片上获得了光亮的纳米镀层.通过正交试验确定最佳的脉冲参教为:正向占空比50%,正向脉冲电流密度30A/dm2,正向周期10ms,反向占空比30%,反向脉冲电流密度8A/dm2.纳米光亮镀层晶粒细致均匀,孔隙率低,平整性好,无裂纹,具有良好的装饰效果.","authors":[{"authorName":"葛文","id":"fb374213-1c7e-4abd-8b4f-dfd7b71fb51f","originalAuthorName":"葛文"},{"authorName":"唐映红","id":"e8512161-838b-4254-9aea-5407ff4b2ef2","originalAuthorName":"唐映红"},{"authorName":"杨祥","id":"4cc8fe7d-19a7-470a-b0ff-9887e31b1d96","originalAuthorName":"杨祥"},{"authorName":"朱鸽","id":"eef8de01-5cfb-4d54-8655-8b3db678c846","originalAuthorName":"朱鸽"}],"doi":"","fpage":"11","id":"7fd0093f-942f-4332-8e2e-00638ad69bef","issue":"4","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"e0bba18d-7a56-46c4-85f7-435df83e530e","keyword":"光亮镀层","originalKeyword":"光亮镍镀层"},{"id":"25512d05-4ffe-4ec7-a34b-c25061069b06","keyword":"双向脉冲电镀","originalKeyword":"双向脉冲电镀"},{"id":"2859df09-632d-4606-8990-ec01db547ddc","keyword":"纳米","originalKeyword":"纳米晶"},{"id":"26459e87-b36d-4f12-bc90-36fa1034d3f1","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"7234815e-2d06-4eaf-88b7-7d95db9cd1c4","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"ddyts200904004","title":"双向脉冲电沉积纳米光亮镀层","volume":"28","year":"2009"},{"abstractinfo":"过去对采用脉冲电镀法制备纳米镀层研究较少.以镀层的耐腐蚀性能作为镀层性能的检测指标,应用正交试验设计优化了脉冲电镀工艺,制备出纳米镀层.结果表明:以主盐NiSO4·2H2O浓度为400 g/L,脉冲平均电流密度为1.5 A/dm2,占空比为20%制备的纳米镀层的耐腐蚀性能最好,维钝电流密度达到0.67 μA/cm2;镀层纳米结构晶粒,尺寸为50~150 nm.","authors":[{"authorName":"孙飞龙","id":"fc8aa120-6f33-4f1d-adf0-4f8f64c17e3f","originalAuthorName":"孙飞龙"},{"authorName":"陈谷芳","id":"c5ebaa24-550b-4520-bbb9-92eb91278c16","originalAuthorName":"陈谷芳"},{"authorName":"孟国哲","id":"c507f453-8cb3-4875-90ea-78fc09018764","originalAuthorName":"孟国哲"},{"authorName":"邵亚薇","id":"7458580c-8121-471c-ae48-0af489c1dc4c","originalAuthorName":"邵亚薇"},{"authorName":"张涛","id":"c3ce7dba-47ce-48a8-b567-10f564e8676b","originalAuthorName":"张涛"},{"authorName":"李多","id":"750bca34-f5cc-4bec-82f3-888e76c52b9e","originalAuthorName":"李多"},{"authorName":"玄晓阳","id":"1436f15f-b6ba-4492-8651-eeef5e9d2c81","originalAuthorName":"玄晓阳"},{"authorName":"马方飞","id":"3d43ad95-2566-4627-a5df-2a2864de5506","originalAuthorName":"马方飞"},{"authorName":"张矿山","id":"3bcb3b40-174c-43f3-ac39-1d7aebb0f1c7","originalAuthorName":"张矿山"}],"doi":"","fpage":"33","id":"4b22f4ac-c28c-41f3-b221-4afbf1b2d85f","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7912b567-8a71-47ec-ae65-03840c3a4973","keyword":"纳米镀层","originalKeyword":"纳米孪晶镍镀层"},{"id":"18e02a84-4781-4b7e-a409-88bb64c4438c","keyword":"脉冲电镀","originalKeyword":"脉冲电镀"},{"id":"a79c8c9e-e2b8-4c08-8215-002f2c8bc06c","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"f759eb91-ff5c-43d1-aa94-d8efca5487bd","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"clbh200907010","title":"纳米镀层制备工艺的正交设计优化","volume":"42","year":"2009"},{"abstractinfo":"为了探讨1,4-丁炔二醇对纳米镀层硬度和耐蚀性的影响,采用直流电沉积法在黄铜表面制备了纳米镀层.利用X7000 X射线衍射仪、FEI Quanta600 FE-SEM扫描电镜、DUH-211S动态超显微微米压痕仪、动电位极化曲线及阻抗谱,研究了不同浓度1,4-丁炔二醇对镀层结构、硬度及耐蚀性的影响规律.结果表明:随着镀液中1,4-丁炔二醇浓度的增加,镀层晶面的择优取向由(200)织构向(111)转变,晶粒尺寸减小;镀层硬度增加,在1,4丁炔二醇浓度为0.5 g/L时达到654 HV;在3.5%NaCl(质量分数)溶液中当1,4-丁炔二醇浓度为0.1 g/L时,镀层的耐腐蚀性最好.","authors":[{"authorName":"朴楠","id":"54537e43-9d6e-4012-a4f4-2cc803bec4f9","originalAuthorName":"朴楠"},{"authorName":"陈吉","id":"03ef006d-07e4-41c8-a20f-25fe20c1746f","originalAuthorName":"陈吉"},{"authorName":"孙彦伟","id":"f0a9f847-41b1-4c7f-a65b-354f248f4044","originalAuthorName":"孙彦伟"},{"authorName":"许志显","id":"7404f5bd-aabe-4dc8-8872-e79331d5a7cb","originalAuthorName":"许志显"},{"authorName":"陈晓明","id":"d0f7765d-41bb-4ba0-860c-6829619bf1f9","originalAuthorName":"陈晓明"},{"authorName":"韩啸","id":"20cea98d-b1f3-4bdd-8620-c5c911e9ab68","originalAuthorName":"韩啸"}],"doi":"","fpage":"5","id":"8ce28b1f-8787-441a-b5dc-102c170bb3d4","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d420935d-9bbf-4619-af3e-116b7669092a","keyword":"直流电沉积","originalKeyword":"直流电沉积"},{"id":"aa4e02c1-c788-4c1b-a0b5-e8b31ee99d0c","keyword":"纳米","originalKeyword":"纳米晶镍"},{"id":"c02fbb8e-a58b-4bb7-a4fc-195d7e86195b","keyword":"1,4-丁炔二醇","originalKeyword":"1,4-丁炔二醇"},{"id":"2ba9697c-538f-473e-a4bb-1e8c73eb099d","keyword":"镀层结构","originalKeyword":"镀层结构"},{"id":"59382766-5184-4a70-b1ce-911a29bd45a8","keyword":"硬度","originalKeyword":"硬度"},{"id":"bc104d1d-2959-4c4b-b2fd-f946e6535e3c","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201502002","title":"1,4-丁炔二醇对纳米镀层结构及性能的影响","volume":"48","year":"2015"},{"abstractinfo":"利用脉冲电镀技术在Q235钢基体上制备了纳米镀层,分别测试了纳米镀层和铸态在pH8.4的硼酸缓冲溶液(0.1 mol/L H3BO3+ 0.025 mol/L Na2B4O7)中的动电位极化曲线。结果表明,两者在硼酸缓冲溶液中均能自钝化,并且前者具有较好的耐腐蚀和钝化性能。利用Mott--Schottky 关系和点缺陷模型(PDM),分别从热力学和动力学两方面研究了纳米结构对钝化膜性能的影响,发现纳米结构对钝化膜中的缺陷密度影响较小,对缺陷在钝化膜中的扩散系数(Dm)却有着显著的影响,这是导致其上生长的钝化膜薄且致密、耐蚀性能好的主要原因。","authors":[{"authorName":"张义孟国哲邵亚薇张涛王福会","id":"d5fc2cff-79c2-4ab4-a1dc-1b327a2cd189","originalAuthorName":"张义孟国哲邵亚薇张涛王福会"}],"categoryName":"|","doi":"","fpage":"99","id":"bdbf9295-230f-4494-ba6e-6dd531471ba0","issue":"2","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"1a726d1e-acbb-40b9-9036-ce1d5be80b68","keyword":"纳米","originalKeyword":"纳米孪晶"},{"id":"dc4a0944-5b64-48d3-b82d-1f15839980fe","keyword":"passive film","originalKeyword":"passive film"},{"id":"58b95bed-0825-404c-b61b-59c3cfc816bc","keyword":"Mott-Schottky relationship","originalKeyword":"Mott-Schottky relationship"},{"id":"243d0f33-4237-46f1-973f-3d4f7c44c49f","keyword":"defect diffusion coefficient","originalKeyword":"defect diffusion coefficient"}],"language":"zh","publisherId":"1005-4537_2009_2_2","title":"高密度纳米镀层的电化学腐蚀行为","volume":"29","year":"2009"},{"abstractinfo":"采用扫描电镜、X射线衍射仪、差热分析仪等分析了化学镀-磷-纳米SiC-PTFE复合镀层的表面形貌和物相结构,并研究了镀层化动力学。结果表明:纳米SiC、PTFE颗粒均匀地分布于复合镀层中,且SiC颗粒在镀层中发生部分团聚;随热处理温度升高,镀层由镀态下的非晶态出现化,并逐渐析出、Ni3P以及Ni3Si等相;与-磷镀层相比,这种含两种颗粒的复合镀层表现出较低的化起始温度与较长的化时间,且其化激活能为268kJ.mol-1。","authors":[{"authorName":"周兆钧","id":"93bf21ed-cd44-44b2-993f-344a55075525","originalAuthorName":"周兆钧"},{"authorName":"谢华","id":"5827d289-4b27-4b34-b3c0-a774b83a8812","originalAuthorName":"谢华"},{"authorName":"李晖","id":"afe6ba2d-9d62-405e-ab3d-6164f49c9b55","originalAuthorName":"李晖"}],"doi":"","fpage":"30","id":"d728dc5b-5ae2-494d-9808-0ae01dd49dae","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e76c878f-8e74-4fa6-8945-8659d4fb49b1","keyword":"化学复合镀","originalKeyword":"化学复合镀"},{"id":"156b2cdc-e7cb-458e-b81f-d80b5a666dfb","keyword":"纳米SiC","originalKeyword":"纳米SiC"},{"id":"fce2f5a5-01c6-4021-9080-e1d9db3fb3f0","keyword":"PTFE","originalKeyword":"PTFE"},{"id":"6531658b-368c-4e64-9e39-8681b69a1108","keyword":"-磷镀层","originalKeyword":"镍-磷镀层"},{"id":"63b1a127-445d-498e-80de-e895f85de068","keyword":"化","originalKeyword":"晶化"}],"language":"zh","publisherId":"jxgccl201204008","title":"化学镀-磷-纳米SiC-PTFE复合镀层的组织结构与化动力学","volume":"36","year":"2012"},{"abstractinfo":"采用电沉积技术制备了纳米-钨-稀土合金镀层,重点研究了其制备工艺及镀层性能,探讨了电流密度、电沉积时间、镀液中稀土含量、镀液pH值和镀液温度等因素对镀层沉积速率的影响;用SEM、XRD、EDS、阳极极化曲线等方法分析了镀层的表面形貌、结构、组成、耐蚀性和抗氧化性等.结果表明:合金镀层的最佳制备工艺条件为电流密度9.5 A·dm-1、镀液pH值7、电沉积时间70 min、镀液温度50℃、镀液中NdCl3添加量4.5 g·L-1或镀液中Ce(SQ4)2添加量3 g·L-1;添加稀土元素钕、铈后合金镀层表面颗粒排列致密、均匀,表面无裂纹,其抗高温氧化性和耐蚀性能与硬铬镀层比较相差较小.","authors":[{"authorName":"刘峥","id":"45700564-d172-4d58-9d06-2177aafab8aa","originalAuthorName":"刘峥"},{"authorName":"张学会","id":"de59a6a8-0ccc-4353-9ffb-5abd392cbe02","originalAuthorName":"张学会"},{"authorName":"张建章","id":"38d83945-eb13-4b3c-aef0-b41c2d1d60b3","originalAuthorName":"张建章"}],"doi":"","fpage":"76","id":"df682efb-ab92-48fd-be8e-d2380d7fe0c5","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"226d816b-82cf-4790-b58f-460cfc3c2aea","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"80c7b263-04ae-4cb2-b5f0-57875709b98e","keyword":"纳米","originalKeyword":"纳米晶"},{"id":"1549effd-071f-43e2-b8d9-9c6acbe2782e","keyword":"-钨合金镀层","originalKeyword":"镍-钨合金镀层"},{"id":"9db18ee2-fb94-4c3d-ac31-48c8174315ce","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"jxgccl201005021","title":"电沉积制备纳米-钨-稀土合金镀层工艺及性能","volume":"34","year":"2010"}],"totalpage":5084,"totalrecord":50831}