{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"宽温度稳定性、大功率一直是微波铁氧体材料研究的重点.本文利用氧化物工艺,通过Gd3+、Sn4+离子对YIG的取代,制成了饱和磁化强度为943Gs、在-40℃~100℃范围内具有良好的温度稳定性的大功率YGdCaSnIG微波石榴石铁氧体.","authors":[{"authorName":"洪向东","id":"2bd86933-4b9f-482f-bc81-6dec7efb218c","originalAuthorName":"洪向东"},{"authorName":"许启明","id":"41c64794-30e1-4eac-9e68-2d6d52b8b1ca","originalAuthorName":"许启明"}],"doi":"10.3969/j.issn.1003-1545.2008.02.007","fpage":"24","id":"fc052b82-7cd9-4e48-8c9b-52d85c8bfd88","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"0a01dee5-dbc5-4fb4-bed1-a7bb06e2312a","keyword":"微波铁氧体","originalKeyword":"微波铁氧体"},{"id":"21ed6b12-2b0b-4a4e-9158-b376d1cc657b","keyword":"自旋波线宽","originalKeyword":"自旋波线宽"},{"id":"3f33a69c-7b2c-4768-9290-0df743d7564e","keyword":"铁磁共振线宽","originalKeyword":"铁磁共振线宽"}],"language":"zh","publisherId":"clkfyyy200802007","title":"宽温度、大功率微波铁氧体材料研究","volume":"23","year":"2008"},{"abstractinfo":"基于传输线理论提出了宽频带测量微波铁氧体铁磁共振线宽的短路微带线法.通过有效参数模型,分析放入样品前后短路微带线单端口网络反射系数S11的变化,进而得到铁磁共振线宽ΔHω=Δω/γ,其中Δω为磁导率虚部共振峰的半高宽.设计和制作了短路微带线夹具,并利用所设计的微带夹具测量了钇铁石榴石(YIG)材料的ΔHω.最后分析了退磁因子对共振频率的影响,并讨论了样品表面缺陷对ΔHω的影响.该方法不仅测量准确度高,操作简单,更解决了低频测量铁磁共振线宽的难点.","authors":[{"authorName":"杨瑞丽","id":"dcbb1175-54e4-4269-98fb-62eae9beb804","originalAuthorName":"杨瑞丽"},{"authorName":"陈浮","id":"b482fdba-2db0-42cb-a5b3-07a6bb3a0ea9","originalAuthorName":"陈浮"},{"authorName":"聂彦","id":"2d49fb00-c5ea-47c4-bb03-8cbf83ec7520","originalAuthorName":"聂彦"},{"authorName":"冯则坤","id":"b9aaa76e-3f4a-423f-ae9b-ed2b1579a34b","originalAuthorName":"冯则坤"}],"doi":"10.3969/j.issn.1001-9731.2017.02.037","fpage":"2197","id":"78f3bd62-fb2b-4265-8ea6-7cd0e4abf308","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"69922277-8613-4913-8bb7-608152e4162e","keyword":"微波铁氧体","originalKeyword":"微波铁氧体"},{"id":"5b03e1b6-e619-4530-a8fa-c8a74a902ccf","keyword":"短路微带线法","originalKeyword":"短路微带线法"},{"id":"ddba81bf-1ea2-4698-83d4-1c4ccaa3c3bc","keyword":"铁磁共振线宽ΔHω","originalKeyword":"铁磁共振线宽ΔHω"},{"id":"9d004d16-7720-4098-8666-899fcbceac3a","keyword":"样品表面缺陷","originalKeyword":"样品表面缺陷"}],"language":"zh","publisherId":"gncl201702037","title":"短路微带线法测量微波铁氧体铁磁共振线宽ΔHω","volume":"48","year":"2017"},{"abstractinfo":"宽温度稳定性,大功率一直是微波铁氧体材料研究的重点.本文根据器件对材料的要求,采用陶瓷工艺.通过研究.Gd3+、Sn4+离子对YIG的c位Y3+、a位Fe3+离子的取代,得出在适当工艺条件下,当x=0.7、Y=O.3时,材料具有良好的温度稳定性,Ms=75×104T、ΔHk=1.1 kA/m.材料很好地满足了宽温度稳定性、高功率用x波段旋磁器件的要求.","authors":[{"authorName":"洪向东","id":"9c23bdd1-c52d-4ff0-ab77-4b80da7a05aa","originalAuthorName":"洪向东"},{"authorName":"许启明","id":"d8684e05-dcd0-4dbc-bd24-54b9b832741e","originalAuthorName":"许启明"},{"authorName":"郝利军","id":"19622efb-93d8-4fd9-9d05-22dbcec7cf10","originalAuthorName":"郝利军"}],"doi":"","fpage":"446","id":"820cc5f3-7e99-4df9-80f8-e96f77a0ac8e","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"2a96cefb-9a14-4d15-8853-350f26ac5ada","keyword":"微波铁氧体","originalKeyword":"微波铁氧体"},{"id":"9762ccf8-dd46-42db-945d-311eee8be16e","keyword":"自旋波线宽","originalKeyword":"自旋波线宽"},{"id":"40e57cfc-86ad-45e6-a61d-4b018122c039","keyword":"铁磁共振线宽","originalKeyword":"铁磁共振线宽"}],"language":"zh","publisherId":"clkxygc200803030","title":"掺Gd3+、Sn4+的YIG微波铁氧体高功率特性","volume":"26","year":"2008"},{"abstractinfo":"利用传统陶瓷工艺制备了化学式为Y3-aGdaFe5-b-cAlbMncO12的复合石榴石铁氧体,研究了Gd3+、Al3+和Mn3+复合取代对(YGdAlMn)IG铁氧体材料高功率特性的影响.结果表明,烧结试样的饱和磁化强度随着Gd3+、Al3+含量的增加而降低,其自旋波线宽、温度稳定性(10~180℃之间的温度系数为(-1.9~-2.8)×10-3(1/℃))随Gd3+含量的增加而增大;同时Mn3+取代可以明显提高电阻率、降低介电损耗.这些特性的改善对制备高功率石榴石铁氧体器件具有指导意义.","authors":[{"authorName":"郝利军","id":"fa4d55a3-7465-4279-a401-2d0576e77331","originalAuthorName":"郝利军"},{"authorName":"许启明","id":"d3d5cc39-43c0-4b0d-b63b-f4a76eaca8d6","originalAuthorName":"许启明"},{"authorName":"刘伟斌","id":"944b6d60-8b3b-466b-a95b-842f36b07548","originalAuthorName":"刘伟斌"},{"authorName":"赵旭东","id":"a09bdc33-a9e4-4289-827c-538f13756aef","originalAuthorName":"赵旭东"}],"doi":"","fpage":"9","id":"d60e27d9-9147-4057-abda-f60efd8d1321","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f44f27f6-f2f3-422b-80d3-ea146deb310d","keyword":"微波铁氧体","originalKeyword":"微波铁氧体"},{"id":"84567ee2-77a8-43de-a96b-5c806566fd49","keyword":"石榴石","originalKeyword":"石榴石"},{"id":"b931add1-5d19-4316-8068-163279d69b06","keyword":"铁磁共振线宽","originalKeyword":"铁磁共振线宽"},{"id":"5f8c781d-b2d6-4305-8ce6-b8a0e29bac5f","keyword":"自旋波线宽","originalKeyword":"自旋波线宽"}],"language":"zh","publisherId":"cldb200902003","title":"复合取代对石榴石铁氧体材料高功率特性的影响","volume":"23","year":"2009"},{"abstractinfo":"总结和评述了近年来国际国内微波铁氧体材料及其应用研究发展动态.特别是随着材料制备技术与电子通信技术的集成化、高频与宽频化以及MMIC集成电路工艺的快速发展,作为现代通信与军事系统中的关键元器件,新结构体系的微波铁氧体材料在米波一毫米波段领域的应用也得到不断的更新.设计与制备出可用于各频带的超小型化、高性能和超宽带高性能器件的新结构新体系铁氧体材料是微波铁氧体材料的开发研究方向.","authors":[{"authorName":"宋开新","id":"dd22cf0f-b390-4706-af2a-fc2e54e1d92e","originalAuthorName":"宋开新"},{"authorName":"徐军明","id":"253f3417-285c-4e8d-abd9-9931fe9c2a43","originalAuthorName":"徐军明"},{"authorName":"郑梁","id":"365bb000-2e19-4b64-9a77-aa683f20e11d","originalAuthorName":"郑梁"},{"authorName":"应智花","id":"796766a2-ebd8-41b3-bbf1-e7ce0dee2279","originalAuthorName":"应智花"},{"authorName":"武军","id":"05689006-77b5-433d-bac7-1b9ea03c42b3","originalAuthorName":"武军"},{"authorName":"秦会斌","id":"e35f8b36-fd73-4929-88a2-2f41b99b6b31","originalAuthorName":"秦会斌"}],"doi":"","fpage":"45","id":"0994ea85-c857-4c79-ae5c-a217a54c2e66","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b39a8ae4-8faa-40a8-8274-823e54b9a9e3","keyword":"微波","originalKeyword":"微波"},{"id":"90875618-dd29-48cc-bc41-3d87f03b2185","keyword":"铁氧体","originalKeyword":"铁氧体"},{"id":"722812ab-0d10-4615-8c89-3305a0b2f978","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb200911010","title":"微波铁氧体材料及其应用","volume":"23","year":"2009"},{"abstractinfo":"分析了铁氧体吸收剂的作用原理,讨论了铁氧体的电磁参数、晶格结构对其微波吸收特性的影响以及铁氧体微波吸收材料的温度特性.概述了尖晶石型和磁铅石型铁氧体吸收剂的研究进展,其中着重介绍了W型六角晶系铁氧体的研究要点和制备工艺的发展.","authors":[{"authorName":"李斌太","id":"b7c93c91-b406-4ae2-b26b-aeddc1757a8a","originalAuthorName":"李斌太"},{"authorName":"陈大明","id":"1fb6dd53-8527-4573-83b4-c4c36f0c61b3","originalAuthorName":"陈大明"},{"authorName":"陈钦生","id":"9b74df91-9665-4a5a-b009-b8033ea8ba06","originalAuthorName":"陈钦生"}],"doi":"10.3969/j.issn.1001-1625.2004.05.016","fpage":"66","id":"560ab8f8-8f43-4460-8436-10805fdb8dd2","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"efed6548-d992-4178-88b9-83b3c48f2e8a","keyword":"铁氧体吸收剂","originalKeyword":"铁氧体吸收剂"},{"id":"55129f1e-c743-40d6-8400-1bbe80a93759","keyword":"研究进展","originalKeyword":"研究进展"},{"id":"d5240cb4-eeb8-4418-854a-ef1482954f4c","keyword":"W型六角晶系铁氧体","originalKeyword":"W型六角晶系铁氧体"}],"language":"zh","publisherId":"gsytb200405016","title":"铁氧体微波吸收材料的研究进展","volume":"23","year":"2004"},{"abstractinfo":"综述了离子取代与六角铁氧体结构、静磁特性、微波吸收性能的关系.表明离子取代可以有效地控制六角铁氧体的Ms,HA等静磁性能,改善其微波电磁性能,使其在亚毫米及毫米波段具有较好的微波吸收特性.对铁氧体在RAM材料中的发展进行展望.","authors":[{"authorName":"王琦","id":"6d598a81-5479-410d-9501-9b16902911c4","originalAuthorName":"王琦"},{"authorName":"官建国","id":"8c084893-b8d7-474b-afb0-f955ff938a0d","originalAuthorName":"官建国"},{"authorName":"刘世权","id":"117d62e3-44bd-4106-a75d-23b1e9a05afa","originalAuthorName":"刘世权"},{"authorName":"张清杰","id":"15c4abe1-3861-4c39-8fe7-aa9bb4b474db","originalAuthorName":"张清杰"}],"doi":"10.3969/j.issn.1001-1625.2005.02.016","fpage":"66","id":"640e0e58-b214-4f83-9d51-394abbfcd810","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"0a38d964-1203-462c-8e9d-cbcc1be02eed","keyword":"离子取代","originalKeyword":"离子取代"},{"id":"aeaa7afc-d789-44d0-a1c5-204399dca07c","keyword":"六角铁氧体","originalKeyword":"六角铁氧体"},{"id":"15ae6d0d-6cb1-4061-83e7-a1f050143f22","keyword":"RAM","originalKeyword":"RAM"},{"id":"05e7f89b-2510-470d-aa85-2f87764b5c22","keyword":"微波吸收性能","originalKeyword":"微波吸收性能"}],"language":"zh","publisherId":"gsytb200502016","title":"离子取代与六角铁氧体RAM的结构及微波吸收性能","volume":"24","year":"2005"},{"abstractinfo":"采用溶胶-凝胶法制备了纳米镍铜铁氧体粒状材料,并对其吸波性能进行研究.实验结果表明,镍铜铁氧体有很好的微波吸收特性,在微波波段有两个吸收峰,较大的吸收峰在9.834GHz处,其值为13.3dB,半峰宽度为3.612GHz.然后,把不同微量稀土铈掺杂到镍铜铁氧体当中,发现适量的稀土铈能提高镍铜铁氧体的吸波性能.较大的吸收峰向高频移动到10.049GHz,其吸收值提高到21.906dB,半峰宽度展宽为4.322GHz.镍铜铁氧体是一种有应用价值的新型微波吸收材料.","authors":[{"authorName":"焦明春","id":"ddaec723-763b-40ae-8907-c513e7bfe831","originalAuthorName":"焦明春"},{"authorName":"李国栋","id":"696a2f02-0ea0-400f-886b-e1aa8dd2cf83","originalAuthorName":"李国栋"}],"doi":"","fpage":"295","id":"5f347e50-0548-46ba-a96d-b1d33e29f1ab","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a28f1cce-651f-46e1-8540-653b26dc5abf","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"4f61ce22-2698-49b6-95d9-ea0656eafb5d","keyword":"镍铜铁氧体","originalKeyword":"镍铜铁氧体"},{"id":"10d9af36-cfdc-45e6-a7e1-9f61d2506aa5","keyword":"吸波特性","originalKeyword":"吸波特性"}],"language":"zh","publisherId":"gncl200502042","title":"纳米镍铜铁氧体粒子的制备与微波吸收特性研究","volume":"36","year":"2005"},{"abstractinfo":"以工业锶铁氧体磁瓦生坯为对象,分别考察了工业隧道窑烧结、间歇微波烧结和连续微波烧结等工艺过程制备M型锶铁氧体永磁材料.微波烧结试验发现:采用间歇工艺可制备出具有磁铅石型结构的锶铁氧体磁瓦,烧结周期为3h,且在1100℃烧结时获得最佳磁性能为:Br=396.0 mT,Hcj=342.9 kA/m,(BH)max=28.23 kJ/m3.其性能优于推板式隧道窑在室温~1230℃,烧结周期20~24 h所烧结的产品.连续微波烧结条件为:1000℃,2h,同样获得磁铅石型结构的锶铁氧体磁瓦,其性能为:Br=363.8 mT,Hcj=363.0kA/m,(BH)max=25.76 kJ/m3.由此可见,针对湿法成型锶铁氧体永磁材料,采用微波烧结工艺不仅能够获得所期望的结构与性能,而且能够显著降低温度和缩短烧结周期.","authors":[{"authorName":"孙延杰","id":"5330d367-eb14-40f6-97d1-73c1d3174ecc","originalAuthorName":"孙延杰"},{"authorName":"金鸣林","id":"a3d31567-5f58-42d1-a13e-1fab4d5afa48","originalAuthorName":"金鸣林"},{"authorName":"王占勇","id":"3fee7e4e-fb4d-4766-a34e-8273dc0dbea1","originalAuthorName":"王占勇"},{"authorName":"蒋涵涵","id":"07e058e2-e1a0-4f51-a933-fa7b3e02c3ed","originalAuthorName":"蒋涵涵"}],"doi":"","fpage":"751","id":"b5fc4b08-87be-4f1c-92ba-e89844324ac1","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"786a3ced-2d77-42e4-a9b7-4adb35ef407a","keyword":"微波烧结","originalKeyword":"微波烧结"},{"id":"ec0f7867-dc42-4c98-9c36-f48f09681578","keyword":"锶铁氧体","originalKeyword":"锶铁氧体"},{"id":"73d71bc1-026b-416d-9126-72322c5c98b0","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"rgjtxb98201304041","title":"微波烧结制备高性能锶铁氧体永磁材料的研究","volume":"42","year":"2013"},{"abstractinfo":"利用柠檬酸溶胶-凝胶自蔓延法合成掺杂镧的磁铅石型系列M型钡铁氧体 (La0.5Na0.5)xBa1-xFe12O19(x=0,0.1,0.3,0.5)和尖晶石型锂铁氧体Li0.5LaxFe2.5-xO4(x=0,0.005,0.015,0.025),并对镧的含量对铁氧体的吸波性能的影响进行了对比研究.实验结果表明,添加适量的镧能显著地改善铁氧体的吸波性能;掺杂量为x=0.3的钡铁氧体和x=0.015锂铁氧体微波吸收最佳.","authors":[{"authorName":"刘学东","id":"e53cca67-a1a4-4d38-a0d6-bb0da4f32d17","originalAuthorName":"刘学东"},{"authorName":"卢佃清","id":"dea4185c-ac29-4db3-8a49-07232253c44c","originalAuthorName":"卢佃清"},{"authorName":"李国栋","id":"fbb559f9-5b45-472d-8ab9-764cb319c7a6","originalAuthorName":"李国栋"}],"doi":"10.3969/j.issn.1004-0277.2007.05.009","fpage":"36","id":"5decf4ce-fa1a-40de-8bfd-65dda4d1add5","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"c340d3a8-8411-4f07-8118-32b254aa88dd","keyword":"溶胶-凝胶自蔓延法","originalKeyword":"溶胶-凝胶自蔓延法"},{"id":"5a75391b-4a54-4819-bc9e-6b2f960b5603","keyword":"稀土掺杂","originalKeyword":"稀土掺杂"},{"id":"dcf4cbf6-8e03-49c9-9ad4-19554a785f3d","keyword":"铁氧体","originalKeyword":"铁氧体"},{"id":"3b042b96-ff1b-41c9-bc98-75d43e84be51","keyword":"微波吸收特性","originalKeyword":"微波吸收特性"}],"language":"zh","publisherId":"xitu200705009","title":"掺杂镧的钡、锂铁氧体粉末的微波吸收特性","volume":"28","year":"2007"}],"totalpage":329,"totalrecord":3283}