{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在90℃条件下,水热处理KMnO4、(NH4)2SO4和H2SO4的水溶液24 h,制备得到了二氧化锰材料.应用X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)技术对所得材料的结构和形貌进行表征.结果表明,所得二氧化锰为具有空心海胆形貌的α-MnO2.通过改变反应时间,研究了α-MnO2的生成过程.同时,研究了空心海胆α-MnO2的电容性质.循环伏安测试结果显示,当扫描速度为5 mV/s时,α-MnO2的比电容为145 F/g.在20 mV/s的扫速下,循环2000圈后其比电容保持率高达95%.","authors":[{"authorName":"朱刚","id":"c76dfd2c-2d50-414f-a446-e17347c24b5a","originalAuthorName":"朱刚"},{"authorName":"李江涛","id":"ced8b6b4-1cbf-4f5d-b697-cac2e478cd2a","originalAuthorName":"李江涛"}],"doi":"","fpage":"790","id":"b0330184-c4ea-442a-bd25-c9241b21dd25","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"77139fdd-a5fd-45ef-9245-11e3447de020","keyword":"二氧化锰","originalKeyword":"二氧化锰"},{"id":"9be47e69-830b-4187-b0d1-12762fbee26b","keyword":"空心海胆","originalKeyword":"空心海胆"},{"id":"0f331488-7969-4ae5-85c4-f5d899db0a5f","keyword":"电极材料","originalKeyword":"电极材料"},{"id":"100437c9-1974-4024-9708-b94dbf30ece4","keyword":"电容性质","originalKeyword":"电容性质"}],"language":"zh","publisherId":"rgjtxb98201503040","title":"空心海胆状MnO2的低温水热制备及其电容性质","volume":"44","year":"2015"},{"abstractinfo":"在乙醇-水溶液体系中,在无模板剂的情况下,水热合成由纳米棒自组装成的独特海胆状薄水铝石(AlOOH)超结构.采用XRD、SEM、TEM和SAED对其物相结构和形貌进行了分析,讨论了铝盐前驱体、醇水比例和反应温度对产物形貌的影响.研究结果表明:当铝盐前驱体为AlCl3·6H2O,醇水体积比为1:2,反应温度为200℃时,得到形貌规则、分散均匀的三维海胆状薄水铝石超结构,该海胆状超结构是由直径60~80nm的纳米棒自组装而成,海胆球直径为6~10μm,选区电子衍射表明该海胆状薄水铝石的多晶本质.在薄水铝石海胆状超结构的形成过程中,定向附着机制起到关键性作用.","authors":[{"authorName":"徐冰","id":"581bdb16-1424-4f5a-ae86-3db998f948bd","originalAuthorName":"徐冰"},{"authorName":"王晶","id":"33c951a9-bd46-4a56-83f3-624f92faece6","originalAuthorName":"王晶"},{"authorName":"于洪波","id":"985ca5af-07be-462c-b7a0-6779e9321a12","originalAuthorName":"于洪波"},{"authorName":"高宏","id":"5089696f-bbc9-4a5f-9a2e-d5c9e5e88b30","originalAuthorName":"高宏"}],"doi":"10.3724/SP.J.1077.2010.01175","fpage":"1175","id":"4e712070-232d-4248-aad7-774799e345f4","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"6360d86b-3bc9-4b29-8c24-09412dfdcc1e","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"38603232-3b6f-4cfc-a1f1-24774206c3a4","keyword":"薄水铝石","originalKeyword":"薄水铝石"},{"id":"35f09337-b5bc-4b01-832e-738c05293952","keyword":"海胆状","originalKeyword":"海胆状"},{"id":"a6d04e70-b543-41e4-aaf0-5e050f84db27","keyword":"超结构","originalKeyword":"超结构"}],"language":"zh","publisherId":"wjclxb201011011","title":"无模板合成海胆状薄水铝石超结构及其形成机理","volume":"25","year":"2010"},{"abstractinfo":"采用水热法合成海胆球形和单相纳米线形MnO2,并以X射线衍射、扫描电子显微镜、循环伏安、交流阻抗等方法对其进行测试.结果表明:相同反应条件下采用不同反应物可制备具有不同形貌的MnO2.海胆球形MnO2由单相γ-MnO2构成,其直径在1~10 μm之间;纳米线形MnO2由单相α-MnO2构成,直径约为50 nm,长度大于1 μm.两种形貌的MnO2在2 mol/L的(NH4)2SO4溶液中具有良好的电容特性,2 mA/cm2放电时海胆球状MnO2比容量值为244 F/g, 纳米线状MnO2比容量值为159 F/g.交流阻抗测试表明,海胆形MnO2作为电极材料,具有更良好的电容性能.","authors":[{"authorName":"亓淑艳","id":"bbeaaf39-2e87-439a-82de-0bc07958f42d","originalAuthorName":"亓淑艳"},{"authorName":"冯静","id":"7d71d592-41ac-4d8d-8be0-130f496aa55a","originalAuthorName":"冯静"},{"authorName":"闫俊","id":"51994a51-5e87-4f3d-9fea-aaf9f27d0b45","originalAuthorName":"闫俊"},{"authorName":"侯相钰","id":"86584815-8b35-4c58-885a-ca82d8e224db","originalAuthorName":"侯相钰"},{"authorName":"张密林","id":"d01b720a-d477-4390-907b-236f0c8b3eac","originalAuthorName":"张密林"}],"doi":"","fpage":"113","id":"53f410e3-761c-45dc-996e-51a34f51ae3a","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"1c609d5c-3b0f-41a4-9c6e-3c95bc243908","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"8ca543df-ba98-4c57-8705-55f5aa519bf8","keyword":"海胆球","originalKeyword":"海胆球"},{"id":"82298cd1-1e28-4951-a3bb-aa83d377b8cc","keyword":"MnO2","originalKeyword":"MnO2"},{"id":"d6a30014-9dcf-42a5-b136-959a79e6206f","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"zgysjsxb200801020","title":"海胆球形和纳米线形MnO2制备及其超级电容特性","volume":"18","year":"2008"},{"abstractinfo":"以Zn(AC)2·2H2O为原料,NH3·H2O为络合剂,在NaBH4辅助下140℃水热反应2h制备出ZnO纳米棒自组装的海胆形结构.采用X射线衍射仪、扫描电镜和透射电镜对产物进行表征.结果表明,海胆形ZnO结构的直径约为3~17μm,它是由直径约为100 nm,长度约为500 nm~3μm范围的ZnO纳米棒自组装而成.提出了ZnO纳米棒自组装海胆形结构的可能生长机理.NaBH4与溶液中的少量H+结合生成H2气泡,ZnO纳米晶吸附在H2的气液界面形成了纳米颗粒自组装的微球,随着反应时间的延长,组装成微球的ZnO纳米颗粒沿[0001]方向取向生长成ZnO纳米棒,最终形成ZnO纳米棒自组装的海胆形颗粒.室温下以海胆形ZnO纳米结构和ZnO纳米棒为光催化剂,以偶氮染料甲基橙作为光催化研究对象,紫外光照70 min,对甲基橙的降解率分别为97%和67%.","authors":[{"authorName":"李丽","id":"a5fa66ef-130b-46b3-a9b7-3656fa197029","originalAuthorName":"李丽"},{"authorName":"王坤","id":"4da69e0b-aec5-4531-987a-b3087ba69450","originalAuthorName":"王坤"},{"authorName":"黄宇晴","id":"dfd86647-a5b3-4572-a2b9-e461206c9a1f","originalAuthorName":"黄宇晴"},{"authorName":"郑林","id":"9186e580-f077-4688-87d7-3fc93d8fbd88","originalAuthorName":"郑林"},{"authorName":"毛金龙","id":"759c863a-3b4d-4d56-a83a-de3a74e70162","originalAuthorName":"毛金龙"}],"doi":"10.3969/j.issn.1007-4252.2012.02.004","fpage":"109","id":"bb7cde8d-a2ae-410d-bf5e-66a98a801ca2","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"ca3a8968-7460-4372-a46d-4a6cf042283d","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"17f37180-547f-40f8-91e3-60e5a571c241","keyword":"海胆形","originalKeyword":"海胆形"},{"id":"a33febca-ba74-4200-ba7d-19de35922395","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gnclyqjxb201202004","title":"海胆形氧化锌纳米结构的制备与光催化性能","volume":"18","year":"2012"},{"abstractinfo":"以钛酸正丁酯(TBT)、甲苯和四氯化钛为主要原料,采用溶剂热合成法制备了分级的海胆状氧化钛颗粒,利用化学镀法在其表面镀覆金属银,然后将镀覆银后的颗粒(Ag@TiO2)分散于无水乙醇中,采用流动沉积覆膜的方式,使颗粒均匀地覆盖在涂有PVA的氧化铟锡导电玻璃(ITOG)或普通玻璃(G)基底上.通过组合,制备了结构为ITOG (G)+ PVA+ Ag@ TiO2+ PVA+ ITOG(G)的材料,测试发现该材料在可见光波段存在明显的透射通带和平板聚焦现象.","authors":[{"authorName":"范宝林","id":"4bda8d37-df8d-40a3-890d-f7f3f0293ea6","originalAuthorName":"范宝林"},{"authorName":"向礼琴","id":"e74e8958-a4c9-46ae-bf83-5ae3eec3d3d4","originalAuthorName":"向礼琴"},{"authorName":"马鹤立","id":"f1f26068-2c72-44ba-9b93-2f69cc64f811","originalAuthorName":"马鹤立"},{"authorName":"罗春荣","id":"6e6b9e42-2536-44b2-b370-6cff47489a2d","originalAuthorName":"罗春荣"},{"authorName":"赵晓鹏","id":"afb44bb9-5c97-4afc-991d-468b750379a2","originalAuthorName":"赵晓鹏"}],"doi":"","fpage":"19","id":"53c7ba17-ae3a-47f9-a59a-ddddc2ddfd42","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"824b43e4-d2bf-4bfd-bf24-1d6a54daa2d0","keyword":"超材料","originalKeyword":"超材料"},{"id":"2370d3e0-e7b0-44ea-a88e-74124ad105bd","keyword":"可见光","originalKeyword":"可见光"},{"id":"1ffdcf0d-cdce-444c-92d9-49c893e9e715","keyword":"溶剂热合成","originalKeyword":"溶剂热合成"},{"id":"1f432c28-defc-4a0c-be17-9868f798a27a","keyword":"化学镀","originalKeyword":"化学镀"}],"language":"zh","publisherId":"cldb201116006","title":"海胆状Ag@TiO2超材料的制备与平板聚焦效应","volume":"25","year":"2011"},{"abstractinfo":"以六水合氛化镍和尿素为原料,利用水热合成法制备了具有徽/纳多孔结构的海胆状NiO的前驱物,经热处理后得到了具有微/纳多孔结构的海胆状NiO微球.通过XRD,SEM,H RTRM和N2-吸附-脱附对制得的NiO微球进行了表征,结果显示表面具有5-20nm微孔的海胆状NiO微球由许多直径3040nm的纳米线组装而成,其比表面积高达325.238m2/g,孔体积0.338cm3/g.充放电测试结果表明,在0.5-v3V电压范围,0.1C倍率下,具有微/纳多孔结构海胆状NiO材料的首次放电比容量高达1636.2mAh/g,对比实验显示,其放电比容量远远高于合成的NiO纳米颗粒的首次放电比容量(792.8mAh/g),且高于已有丈献报道的其它形貌NiO材料的放电比容量.","authors":[{"authorName":"刘海东","id":"6dd68c2e-a4ef-4682-a6b4-ddc4fa231f96","originalAuthorName":"刘海东"},{"authorName":"孙俊","id":"3dd71f9a-5eba-423f-9077-4e4d4af009ac","originalAuthorName":"孙俊"},{"authorName":"毕红","id":"a8c8cbe5-46b3-4fcd-b281-e51836ed9f3f","originalAuthorName":"毕红"}],"doi":"","fpage":"560","id":"591e76e7-6812-4f09-9f60-d7917f817090","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b4b5bae8-5f2c-40a8-a3bf-ac85779e7fdd","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"2f121396-7ee6-4992-be63-46cc65fda07f","keyword":"微/纳多孔结构","originalKeyword":"微/纳多孔结构"},{"id":"976e60c0-656b-4259-8088-d7bc69482038","keyword":"海胆状NiO","originalKeyword":"海胆状NiO"},{"id":"4e2a23d6-b74d-4961-babb-4428535f04c1","keyword":"比容量","originalKeyword":"比容量"}],"language":"zh","publisherId":"gncl201103048","title":"具有微/纳多孔结构的海胆状NiO的制备及其比容量研究","volume":"42","year":"2011"},{"abstractinfo":"建立了液相色谱-四极杆串联质谱法定量检测海参和海胆中单唾液酸神经节苷脂的分析方法.采用Svennerholm法从海胆或海参样品中提取神经节苷脂,经C8固相萃取柱净化,采用APS-2 NH2柱(150 mm×2.1 mm,3μm),以乙腈和50 mmol/L乙酸铵溶液(pH 5.6)为流动相,梯度洗脱.样品中每种成分的定量在多反应监测模式下进行.该方法具有极高的灵敏度,定量限可低至纳克级.非硫酸酯化单唾液酸神经节苷脂(NMG)和硫酸酯化单唾液酸神经节苷脂(SMG)在1~40 ng进样量范围内呈现良好的线性关系;定量结果显示所测海参样品中美国红参的NMG含量最高,海胆样品中紫海胆的SMG含量最高;海胆中总的单唾液酸神经节苷脂含量(4.30~6.40mg/g)明显高于各海参样品(8~131 μg/g).该方法稳定可靠,适合海胆和海参中微量单唾液酸神经节苷脂的定量分析.","authors":[{"authorName":"丛培旭","id":"bcf8741d-885f-48cf-a690-605e53a4df01","originalAuthorName":"丛培旭"},{"authorName":"李兆杰","id":"0f5431fc-0bde-47fd-95d4-498669702a12","originalAuthorName":"李兆杰"},{"authorName":"徐杰","id":"5e4d17ca-b1f6-4395-964f-576dbaadd247","originalAuthorName":"徐杰"},{"authorName":"于槚槚","id":"a94fe929-676b-488c-bbcc-c28c19a9fb64","originalAuthorName":"于槚槚"},{"authorName":"常耀光","id":"86d3fdd6-b5f7-4ea0-9a02-6e3bde7c4f25","originalAuthorName":"常耀光"},{"authorName":"薛长湖","id":"74528720-1e05-4406-9217-53b953e66f16","originalAuthorName":"薛长湖"}],"doi":"10.3724/SP.J.1123.2012.12031","fpage":"399","id":"5597132b-8967-4045-8e48-cac2f266279f","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"d756c4d5-da0e-47d8-97b8-5cc7181ede67","keyword":"液相色谱-串联质谱","originalKeyword":"液相色谱-串联质谱"},{"id":"8b7c1d3b-493d-4648-8e98-995d19e674e8","keyword":"多反应监测","originalKeyword":"多反应监测"},{"id":"b0832247-506d-457f-922a-1cce6ab5fa85","keyword":"单唾液酸神经节苷脂","originalKeyword":"单唾液酸神经节苷脂"},{"id":"56c91fe0-132d-4fc9-bce1-d0df1ca0e006","keyword":"海参","originalKeyword":"海参"},{"id":"89e29c99-52ff-42e0-9b71-f4e34917f7c2","keyword":"海胆","originalKeyword":"海胆"}],"language":"zh","publisherId":"sp201305001","title":"液相色谱-串联质谱法测定海参和海胆中的单唾液酸神经节苷脂","volume":"31","year":"2013"},{"abstractinfo":"对空心微珠的应用背景、概念、分类和性能进行了简要概述,并详细介绍了粉煤灰空心微珠的产生条件和产生过程,分别对三种人造空心微珠和从粉煤灰中提取的漂珠和沉珠的应用进行了详细的叙述.最后对空心微珠的应用和发展方向进行了展望.","authors":[{"authorName":"李云凯","id":"c2eaffa1-e6fb-48ab-8f9e-e33427d01854","originalAuthorName":"李云凯"},{"authorName":"王勇","id":"0b7e53a7-1ce3-4868-ba9b-a63d5ae299fe","originalAuthorName":"王勇"},{"authorName":"高勇","id":"6ede4919-6c09-45b1-84ad-aef5ef307535","originalAuthorName":"高勇"},{"authorName":"钟家湘","id":"97def0ed-5203-4253-900f-ef0d3e261e43","originalAuthorName":"钟家湘"}],"doi":"10.3969/j.issn.1004-244X.2002.03.016","fpage":"51","id":"516379da-09fd-4404-8e6e-5fae8b40d551","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"76443740-77bc-479d-ae1f-7077f02bccfb","keyword":"空心微珠","originalKeyword":"空心微珠"},{"id":"b694b357-9990-416c-9e64-6babe659c6fb","keyword":"性能","originalKeyword":"性能"},{"id":"50b74c8d-a6fb-4c26-be5d-52d99530a9ff","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"bqclkxygc200203016","title":"空心微珠简介","volume":"25","year":"2002"},{"abstractinfo":"以水热法合成的单分散碳球和三价铁盐为原料,通过水解反应和热还原得到碳球/Fe3O4“海胆”状复合材料.复合材料的结构和形貌特征通过SEM、EDS和XRD等进行表征,并通过充放电测试研究了复合材料作为锂离子电池负极材料的电化学性能.由于Fe3O4和球状碳材料各自独特的结构和优异的性能,二者之间的相互协同作用为复合材料提供了更多的储锂位点,提高了材料的电化学性能.用制得的复合物做为负极材料装配的扣式锂离子电池在电流密度为0.1A·g-1时的首次可逆放电比容量可达986 mAh·g-1,显示出优良的容量特性,但材料的倍率性能仍有待提高.","authors":[{"authorName":"闫姣","id":"cda6b4de-ddb0-4786-b9d7-72ba05a34f33","originalAuthorName":"闫姣"},{"authorName":"肖博","id":"129e533d-eed9-4708-aabe-4dc68c64304f","originalAuthorName":"肖博"},{"authorName":"徐叶叶","id":"41faf5e6-16c1-42ff-b2ad-f4f9798e2032","originalAuthorName":"徐叶叶"}],"doi":"","fpage":"918","id":"7a0dc746-fd30-42e6-90ed-d7763df2cc94","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"5f6b7361-226b-4ed5-9a94-9f937737299a","keyword":"Fe3O4","originalKeyword":"Fe3O4"},{"id":"49cb4f84-6af7-4d65-aef6-a5d6a2a23cf9","keyword":"碳球","originalKeyword":"碳球"},{"id":"ab8c0a96-41a2-4ff7-9646-4855ffe47a6e","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"088d56bf-e46d-4c1d-bcbf-af864a9dcde2","keyword":"负极","originalKeyword":"负极"}],"language":"zh","publisherId":"rgjtxb98201604012","title":"碳球/Fe3O4“海胆”状复合材料的制备及应用研究","volume":"45","year":"2016"},{"abstractinfo":"介绍了几种空心微珠(粉煤灰空心微珠、空心玻璃微珠、空心碳微珠以及其它空心微珠)的性能特点、制备方法以及在实际中的应用现状;并介绍了一种基于自蔓延高温合成技术制备空心陶瓷微珠的新方法,最后指出了各类空心微珠存在的问题及应用研究前景.","authors":[{"authorName":"娄鸿飞","id":"22069828-780f-4437-b16e-d3e2e828afa0","originalAuthorName":"娄鸿飞"},{"authorName":"王建江","id":"4929aeaf-be81-40ae-8610-36103929de78","originalAuthorName":"王建江"},{"authorName":"胡文斌","id":"8ee20191-1c70-4fd2-aefe-4bea5fa8f31b","originalAuthorName":"胡文斌"},{"authorName":"程勇","id":"08bb1a25-76fd-4ed4-84ff-5f7ea301def1","originalAuthorName":"程勇"}],"doi":"","fpage":"453","id":"20ef887a-0ed1-4894-8b00-13290b908bf4","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8059098b-98ee-48fb-8325-deaed828ff65","keyword":"空心微珠","originalKeyword":"空心微珠"},{"id":"f447a959-e091-4979-90a5-13ef626e1195","keyword":"制备","originalKeyword":"制备"},{"id":"df35406d-d57c-45b4-bb4b-c81d9c2a8e55","keyword":"性能","originalKeyword":"性能"},{"id":"923fedb0-12cb-4825-a00f-af2ce71a0ce7","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb2010z2122","title":"几种空心微珠的研究现状与发展","volume":"24","year":"2010"}],"totalpage":76,"totalrecord":760}