{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用改进的化学沉积法,用ZnO对TiO2-纳米管进行改性,制备ZnO/TiO2-纳米管的复合半导体材料.用X 射线衍射仪、透射电镜、高分辨透射电镜、X 射线能谱仪、比表面分析仪,紫外-可见光度计等研究样品的结构、表面形貌和化学组成.通过光降解甲基橙模拟污染物考察其光催化性能,并探讨ZnO粒子表面修饰增强TiO2-纳米管光催化活性的机制.结果表明:n(Zn)-n(Ti)为1-4的ZnO/TiO2-纳米管复合材料具有最佳的光催化活性;Zn和Ti的协同效应改善了复合材料的可见光响应性.","authors":[{"authorName":"朱磊","id":"89b00cea-35a8-45ce-8ae1-6ebc12637710","originalAuthorName":"朱磊"},{"authorName":"段学臣","id":"6b2e1732-0923-4cfe-856e-e5aeb9adaa4f","originalAuthorName":"段学臣"},{"authorName":"蒋波","id":"ae3883e5-fba4-49b2-9c3e-d544fd0de56b","originalAuthorName":"蒋波"},{"authorName":"刘扬林","id":"51f81f65-20cd-48c0-8c08-3c8a2f948523","originalAuthorName":"刘扬林"},{"authorName":"刘国聪","id":"baccefeb-8d8d-4ca7-9e38-5b579a925f68","originalAuthorName":"刘国聪"},{"authorName":"张智建","id":"dd5d9efd-d93c-4428-acb1-ae5bf10e6e7a","originalAuthorName":"张智建"}],"doi":"","fpage":"1382","id":"9bc2e032-8108-43be-8559-74e91f44ea7d","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"0f3911ab-3e80-4991-853d-a062505fb73b","keyword":"TiO2-纳米管","originalKeyword":"TiO2-纳米管"},{"id":"b7feaf46-b68e-4888-845c-c7400f03d663","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"5cb8f5cf-f1b0-4add-915e-deeebac0c766","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"fa125eea-f09d-45c4-a264-96d7b13041e1","keyword":"可见光","originalKeyword":"可见光"},{"id":"4c37e479-4938-4890-b5fc-ddac7ecfdec4","keyword":"光催化机理","originalKeyword":"光催化机理"}],"language":"zh","publisherId":"zgysjsxb201007021","title":"ZnO/TiO2-纳米管光催化剂的制备与表征","volume":"20","year":"2010"},{"abstractinfo":"近年来管状结构的纳米TiO2在微电子、应用催化和光电转化等领域展现出良好的应用前景,对其制备技术和应用研究已成为多学科研究的热点.主要综述了TiO2纳米管的最新研究进展情况以及发展现状,介绍了其制备方法、形貌、晶体结构、形成机理及应用前景.","authors":[{"authorName":"郭孟狮","id":"daf223e0-393f-44bb-ad73-4e0ec9c34fe7","originalAuthorName":"郭孟狮"},{"authorName":"杨靖华","id":"6b930da8-fc33-4e4c-9def-65911297a337","originalAuthorName":"杨靖华"},{"authorName":"周心艳","id":"21be5e93-8ac0-48b4-b435-436c915ac278","originalAuthorName":"周心艳"}],"doi":"","fpage":"108","id":"d4efb733-d1f4-488d-aa76-e95aee0039ab","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3823551c-42da-419c-a4fb-5c51e6804d7a","keyword":"二氧化钛纳米管","originalKeyword":"二氧化钛纳米管"},{"id":"57a4e6a0-5634-469a-abcc-2484e4cf95bb","keyword":"水热法","originalKeyword":"水热法"},{"id":"4bb0717a-46c8-4062-b8c2-77d1b2fdbce3","keyword":"模板法","originalKeyword":"模板法"},{"id":"9ad75816-7b54-4d91-89f0-b6b5aaaf280d","keyword":"阳极氧化","originalKeyword":"阳极氧化"}],"language":"zh","publisherId":"cldb2006z2031","title":"TiO2纳米管的研究进展","volume":"20","year":"2006"},{"abstractinfo":"利用在钛箔表面沉积一层TiO2纳米粒子作为晶种,与NaOH反应,通过改变反应温度制备了TiO2纳米管纳米线.制备了TiO2纳米管纳米线膜电极,并进行了光电化学测试.光电化学实验表明,混晶结构TiO2纳米管纳米线显示出优良的光电转化性能.","authors":[{"authorName":"郝彦忠","id":"0fc4d5b5-731e-4b52-bbe0-777aa1718847","originalAuthorName":"郝彦忠"},{"authorName":"王利刚","id":"ccd05939-eb77-4bd7-a61a-1b8b62ac4097","originalAuthorName":"王利刚"}],"doi":"","fpage":"874","id":"1fe2b5db-929f-4445-bc8e-250b91ec051f","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7f57e28-cc37-4c7a-a6d5-ebbe1ec4ea2f","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"aa39e28c-503c-454d-a3d7-d1b1aba88ed5","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"0ad35819-f078-4d10-8d1b-b59fb2308473","keyword":"光电化学","originalKeyword":"光电化学"}],"language":"zh","publisherId":"gncl200805051","title":"TiO2纳米管纳米线的光电化学研究","volume":"39","year":"2008"},{"abstractinfo":"TiO2纳米管在气体传感、光电转换、光催化、光裂解等方面具有广阔的应用前景.在气体传感器领域,最新的研究数据表明:室温下通入1000×10-6H2,TiO2纳米管气体传感器的灵敏度高达108.7,这是迄今为止所有材料在任意温度下对任意气体的最大灵敏度.综述了TiO2纳米管气体传感器的研究进展,分析了TiO2纳米管的制备方法、微观结构以及TiO2纳米管气体传感器的性能和敏感机理,展望了TiO2纳米管气体传感器的发展方向.","authors":[{"authorName":"马士才","id":"9b38df69-4347-415e-b273-923a96bb924e","originalAuthorName":"马士才"},{"authorName":"季惠明","id":"012270e8-fc17-4f82-ac0a-85b4eb11c2bf","originalAuthorName":"季惠明"},{"authorName":"张晨","id":"d83d09ac-db2f-430e-8793-0d9fcd7ae19b","originalAuthorName":"张晨"}],"doi":"","fpage":"111","id":"301211a3-1118-459e-8fc3-f2f79aa3e73f","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1340b45d-90e0-426f-aafc-ac1d679d5310","keyword":"TiO2纳米管","originalKeyword":"TiO2纳米管"},{"id":"f1958429-403f-4fa9-9161-0364cc6fe7bb","keyword":"气敏材料","originalKeyword":"气敏材料"},{"id":"68369b79-ffc5-4866-a3a1-03c64a3a4e50","keyword":"传感器","originalKeyword":"传感器"}],"language":"zh","publisherId":"cldb2006z2032","title":"TiO2纳米管气敏材料的研究与应用","volume":"20","year":"2006"},{"abstractinfo":"采用电化学阳极氧化法在HF水溶液体系中对钛金属进行表面处理,得到高度规整的TiO2纳米管阵列.主要研究了电解液pH值大小对TiO2纳米管阵列形貌(径及长)的影响;用扫描电子显微镜(SEM)对其表面形貌进行表征.结果表明:酸性条件下能形成TiO2纳米管;强碱性环境不利于TiO2纳米管的制备;在可制备TiO2纳米管的pH值范围内,径和长随pH值升高而减小.采用微孔模型对pH值的影响机理进行了阐述.","authors":[{"authorName":"陈文标","id":"47fef130-3b6a-45eb-aae5-92be0231988b","originalAuthorName":"陈文标"},{"authorName":"邹华生","id":"c550aad4-5d89-447e-b848-4483f2d930fd","originalAuthorName":"邹华生"}],"doi":"","fpage":"103","id":"8c1e8b08-ec0c-41df-ab46-5198b783a258","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b6fd2b6e-2ece-42c0-9c71-4ff10400cbb9","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"5649b181-b833-4d95-ba94-b8f2464dea78","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"202644ff-1588-4734-8827-956b2344fd48","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"409527d5-d83f-42fb-8db6-9de0deed621d","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"cldb2008z1033","title":"阳极氧化法制备TiO2纳米管的pH值参数研究","volume":"22","year":"2008"},{"abstractinfo":"采用水热合成法制备出TiO2纳米管,通过XRD、TEM和氮气等温吸附-脱附仪等测试手段对TiO2纳米管进行了表征.用烧结的TiO2纳米管和P25粉末混合制成薄膜电极,并研究了薄膜电极的表面形貌、染料吸附量和光电性能.研究表明,加入TiO2纳米管可以制备出机械稳定的薄膜;掺杂TiO2纳米管的含量越多,薄膜电极的染料吸附量越大;掺杂5%烧结纳米管粉末的薄膜电极的光电性能最好,其短路电流可达3.25mA,光电转换效率达到1.67%.","authors":[{"authorName":"张凤","id":"dce5888d-75da-4f9f-8b35-355fe346c274","originalAuthorName":"张凤"},{"authorName":"陶杰","id":"bf775de5-0659-4b69-8561-12ef745e02d8","originalAuthorName":"陶杰"},{"authorName":"陶海军","id":"2cdac472-dc0d-42a6-a61a-8290d5350dfd","originalAuthorName":"陶海军"},{"authorName":"董祥","id":"d410f66f-1d8a-47e1-8523-545a6b21618a","originalAuthorName":"董祥"}],"doi":"","fpage":"224","id":"1379f21f-1ffc-4b45-bfc6-73df8d07ccf9","issue":"3","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"2bb691c3-7b61-424e-b626-3cbed79f1806","keyword":"TiO2纳米管","originalKeyword":"TiO2纳米管"},{"id":"380cb6bc-79b9-47c3-8e2b-35cac4813829","keyword":"水热法","originalKeyword":"水热法"},{"id":"3eabb256-929d-4bfb-8dda-2f3d14699b18","keyword":"TiO2薄膜电极","originalKeyword":"TiO2薄膜电极"},{"id":"19b9a5bb-2a3a-4f17-aad2-9824d3873e75","keyword":"柔性染料敏化太阳能电池","originalKeyword":"柔性染料敏化太阳能电池"},{"id":"b74e1cca-f125-495f-a953-ce6742867d89","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"ggkxyghx200803008","title":"柔性TiO2纳米管薄膜电极的制备及其光电性能","volume":"26","year":"2008"},{"abstractinfo":"以低模量钛合金(Ti35Nb和Ti35Nb15Zr)为阳极氧化基材, 采用表面阳极氧化方法制备出铌元素和锆元素掺杂的非晶TiO2纳米管阵列, 比较了掺杂前后纳米管的润湿性能与体外生物活性. 实验结果表明, 加入铌和锆元素可减小TiO2纳米管径, 并有助于增大TiO2纳米管的长度. TiO2纳米管表现出与未氧化前的金属基材所不同的疏水行为. 掺杂TiO2纳米管的润湿性随着掺杂元素的变化而变化, 铌元素的掺杂可使TiO2纳米管的润湿性改善, 铌元素和锆元素共同掺杂对润湿性的改善作用更明显. 在模拟体液(SBF)中浸泡后, 掺杂TiO2纳米管可快速诱导磷灰石的形成. 铌锆元素共同掺杂的纳米管在初始浸泡阶段呈现较快的磷灰石沉积速率. 上述研究结果表明, 可以通过基材合金化设计来调控或修饰材料表面的亲水或疏水性能, 从而探索掺杂TiO2纳米管的生物学性能. ","authors":[{"authorName":"黄麟","id":"306e121d-3654-412c-a8f2-6cec98210b8e","originalAuthorName":"黄麟"},{"authorName":"宁聪琴","id":"dd790f23-560a-433e-83ae-f4c7c30a0b48","originalAuthorName":"宁聪琴"},{"authorName":"丁冬雁","id":"f20d4941-4823-46a8-b511-a16c297f5e94","originalAuthorName":"丁冬雁"},{"authorName":"白硕","id":"4404d668-bb2f-4275-878a-3238b50a005c","originalAuthorName":"白硕"},{"authorName":"秦锐","id":"00ec6b44-2f41-4d88-88f1-b4fd076e09f2","originalAuthorName":"秦锐"},{"authorName":"李明","id":"086acd56-ab58-49b6-8bbb-ba99aa05db0f","originalAuthorName":"李明"},{"authorName":"毛大立","id":"3fb7967a-be06-45c6-8f0a-5f80cb6eaeb6","originalAuthorName":"毛大立"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.09749","fpage":"775","id":"30e946d5-f56b-437c-bd38-9810a0e4da12","issue":"7","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e29b2f67-2a1a-474f-a4b7-18daeb5677f9","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"02fc0e9d-7816-4d1d-9f61-f3d38edc9ff8","keyword":"nanotubes","originalKeyword":"nanotubes"},{"id":"37e827eb-789d-48a3-a3bc-cd4d96e31c1f","keyword":"wettability","originalKeyword":"wettability"},{"id":"73281dae-6bb6-4f11-ab9c-976a49e5b50c","keyword":"bioactivity","originalKeyword":"bioactivity"}],"language":"zh","publisherId":"1000-324X_2010_7_8","title":"掺杂TiO2纳米管的润湿性能与体外生物活性","volume":"25","year":"2010"},{"abstractinfo":"以低模量钛合金(Ti35Nb和Ti35Nb15Zr)为阳极氧化基材,采用表面阳极氧化方法制备出铌元素和锆元素掺杂的非晶TiO2纳米管阵列,比较了掺杂前后纳米管的润湿性能与体外生物活性,实验结果表明,加入铌和锆元素可减小TiO2纳米管径,并有助于增大TiO2纳米管的长度.TiO2纳米管表现出与未氧化前的金属基材所不同的疏水行为.掺杂TiO2纳米管的润湿性随着掺杂元素的变化而变化,铌元素的掺杂可使TiO2纳米管的润湿性改善,铌元素和锆元素共同掺杂对润湿性的改善作用更明显.在模拟体液(SBF)中浸泡后,掺杂TiO2纳米管可快速诱导磷灰石的形成.铌锆元素共同掺杂的纳米管在初始浸泡阶段呈现较快的磷灰石沉积速率.上述研究结果表明,可以通过基材合金化设计来调控或修饰材料表面的亲水或疏水性能,从而探索掺杂TiO2纳米管的生物学性能.","authors":[{"authorName":"黄麟","id":"e3a48786-0aa4-40ad-abb8-540bae0a373d","originalAuthorName":"黄麟"},{"authorName":"宁聪琴","id":"8877fba8-3a38-4449-9dec-4b6d7644953d","originalAuthorName":"宁聪琴"},{"authorName":"丁冬雁","id":"8709c76e-ea77-42e2-8774-082e7dd8b2e8","originalAuthorName":"丁冬雁"},{"authorName":"白硕","id":"dc881538-3808-4810-9d6b-7f32d4f7cc66","originalAuthorName":"白硕"},{"authorName":"秦锐","id":"5d2e6963-cd6d-4795-a8af-5aa7ac647914","originalAuthorName":"秦锐"},{"authorName":"李明","id":"b7888876-ce02-4f0b-8546-6c13b283173d","originalAuthorName":"李明"},{"authorName":"毛大立","id":"81ce7117-222a-4750-ae59-6ba9c46d7695","originalAuthorName":"毛大立"}],"doi":"10.3724/SP.J.1077.2010.09749","fpage":"775","id":"c8d5aaf7-8c3a-4813-a072-e2d1061580da","issue":"7","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"400c707a-df37-45b0-91c2-755b0dcb5dbb","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"0fb440ec-87c1-4eec-8f28-65794d1adddd","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"058b0661-7b17-4e55-8f2a-e071cc2f94b3","keyword":"润湿性","originalKeyword":"润湿性"},{"id":"cc838ad6-11f7-40d7-ab25-4771e0d77fe7","keyword":"生物活性","originalKeyword":"生物活性"}],"language":"zh","publisherId":"wjclxb201007022","title":"掺杂TiO2纳米管的润湿性能与体外生物活性","volume":"25","year":"2010"},{"abstractinfo":"对纯钛片进行阳极氧化,得到长度约2 μm的TiO_2纳米管,在AgNO_3溶液中TiO_2纳米管在紫外光照射下,成功的将Ag~+离子还原为Ag单质,并沉积在TiO_2纳米管表面;用XRD,SEM和XPS对制备的样品进行表征,结果显示:Ag微粒(10~120 nm)是以单质的形式,不均匀的分布在TiO_2纳米管表面,并具有很好的化学稳定性;Ag/TiO_2纳米管光电催化效率随Ag量的增加而增加,但超过最佳值后降解效率就会下降:实验显示Ag含量为1.15%的Ag/TiO_2纳米管降解效率最高,紫外光照射3 h后,初始浓度为10×10~(-6)mol/L的亚甲基蓝溶液降解率达到100%,比未掺杂Ag的TiO_2纳米管降解效率提高了22.98%.","authors":[{"authorName":"万斌","id":"9b2aa2dd-decf-4549-9da9-a5359494f28b","originalAuthorName":"万斌"},{"authorName":"陈鸣波","id":"f3fd7e47-2a58-4992-b83a-7d036d9cabbe","originalAuthorName":"陈鸣波"},{"authorName":"周细应","id":"4234597d-2ea9-4025-a1ef-9e0feb6c527b","originalAuthorName":"周细应"},{"authorName":"沈嘉年","id":"a14a855c-6712-4bb0-b272-99fcde037dd3","originalAuthorName":"沈嘉年"},{"authorName":"李文戈","id":"edbeb79e-cf0d-4b00-9b85-da8374a83d63","originalAuthorName":"李文戈"}],"doi":"","fpage":"2012","id":"92ce5f23-a968-46d8-a1f5-53132d99107d","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d3a5bf8a-c9a6-4b00-8b97-104ffa0f043a","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"2d991f79-e87e-4555-94a2-7a099ffb1b14","keyword":"TiO_2纳米管","originalKeyword":"TiO_2纳米管"},{"id":"7ca4cedd-17b8-4592-8e03-c40099d0f34f","keyword":"Ag掺杂","originalKeyword":"Ag掺杂"},{"id":"5f100aac-c4c0-451b-8824-2e8ba2e09f14","keyword":"光电催化","originalKeyword":"光电催化"}],"language":"zh","publisherId":"xyjsclygc200911029","title":"Ag/TiO_2纳米管的制备及其光催化性能","volume":"38","year":"2009"},{"abstractinfo":"采用阳极氧化法在纯钛表面制备TiO2纳米管阵列膜层,利用XRD、FESEM等研究了阳极氧化时间、氧化电压以及退火对TiO2纳米管形貌和结构的影响,并讨论了其形成机理。结果表明:采用此方法可在纯钛表面制备出排列有序的TiO2纳米管阵列膜层;随着氧化电压的升高,纳米管直径增大,管状特征明显;随着氧化时间的延长,纳米管尺寸更均匀,排列更整齐;退火前,纳米管为无定形态,经450℃退火后,TiO2大部分为锐钛矿相,少部分为金红石相。","authors":[{"authorName":"王淑芳","id":"3366550c-1f67-4446-ac54-1abc4e57fb70","originalAuthorName":"王淑芳"},{"authorName":"李生娟","id":"74ec6624-ebad-4b45-80d9-114c9f926645","originalAuthorName":"李生娟"},{"authorName":"李来强","id":"ae38173e-4755-4cda-b322-89418240e4e7","originalAuthorName":"李来强"},{"authorName":"王树林","id":"7597ce61-5440-44ea-9c47-08fc9df11999","originalAuthorName":"王树林"}],"doi":"","fpage":"106","id":"6abbb5ca-6b5d-40f1-96df-0180c7123477","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"8c765fd6-3397-4268-adb9-97fb421a8585","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"18c1d742-563f-42ac-a512-da0d96490627","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"910476f5-b2f1-4254-ade0-19241024d427","keyword":"纳米管","originalKeyword":"纳米管"}],"language":"zh","publisherId":"jxgccl201111028","title":"阳极氧化法制备TiO2纳米管阵列及其表征","volume":"35","year":"2011"}],"totalpage":9487,"totalrecord":94870}