{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚氧乙烯为起始原料,合成了一系列硬脂酸聚氧乙烯酯及其丙烯酸酯,用FTIR和1H NMR测试技术对其结构进行了表征,用最大气泡法测定了其表面张力.以其作为接枝单体,利用反应挤出接枝方法制备了系列功能化聚乙烯,用FTIR确定了接枝共聚物的结构和接枝率;用DSC、接触角测量仪对接枝共聚物的热性能、结晶行为和表面性质进行了测试分析.结果表明,含有不同分子量(200、600、1 000、2 000和6 000)聚氧乙烯的硬脂酸聚氧乙烯酯的表面张力分别为30.19、32.22、35.30、38.39和43.37 mN/m;相应的聚乙烯接枝共聚物的结晶温度分别为109.30、109.08、110.18、109.74和109.74℃,水接触角分别为81.060、70.100、72.25°、76.加.和95.55°.随着聚氧乙烯分子量的增加,表面活性剂的表面活性降低;聚乙烯接枝共聚物的结晶温度高于线形低密度聚乙烯(LLDPE,T.=104.95℃),且其亲水性得到改善(纯聚乙烯的水接触角103°).","authors":[{"authorName":"","id":"b42a10a8-7be3-4aa0-8dfb-64b47a5fb38e","originalAuthorName":"辛志荣"},{"authorName":"邱召明","id":"c52aaecb-1d5e-4a91-961b-120bee3fbdd0","originalAuthorName":"邱召明"},{"authorName":"侯万国","id":"c4dbb0e4-abf0-4547-92fe-8c5987b6c8aa","originalAuthorName":"侯万国"},{"authorName":"尹立刚","id":"75e83788-f3ed-4c06-a4af-c5934629b6fd","originalAuthorName":"尹立刚"},{"authorName":"刘晓丽","id":"3aa4b957-7320-412d-8043-de3719fc5d3e","originalAuthorName":"刘晓丽"},{"authorName":"柳婵","id":"4576d4e6-5997-4d64-981d-61fd01760b39","originalAuthorName":"柳婵"},{"authorName":"殷敬华","id":"42be0ecc-292e-4b5d-bc71-d2f388ae0ad9","originalAuthorName":"殷敬华"}],"doi":"10.3969/j.issn.1000-0518.2009.04.002","fpage":"378","id":"a15dd6e5-1cc3-45bb-8363-26763f5a2a0b","issue":"4","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"298feab5-fc87-4df5-b23c-6e6a72394969","keyword":"丙烯酸酯","originalKeyword":"丙烯酸酯"},{"id":"93f2dabd-b0ad-4485-8ea8-c752b85d5202","keyword":"DSC","originalKeyword":"DSC"},{"id":"00871220-5266-47de-b21a-502c06aa2c70","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"1e5a5210-fff3-4499-8bc2-7b824f9a9289","keyword":"聚乙烯接枝共聚物","originalKeyword":"聚乙烯接枝共聚物"},{"id":"87bdef89-2d94-4216-88da-79c22c89728b","keyword":"反应挤出接枝","originalKeyword":"反应挤出接枝"}],"language":"zh","publisherId":"yyhx200904002","title":"硬脂酸聚氧乙烯酯与聚乙烯接枝共聚物的制备与表征","volume":"26","year":"2009"},{"abstractinfo":"要 以烷基胺、1,3-二溴丙烷为主要原料,采用两步法合成了不同碳链长度(n=8、12、16)的N,N’-二烷基(8/12/16)-N,N’-二葡萄糖丙二酰胺非离子双子表面活性剂.通过FTIR与1HNMR对产物的结构进行了表征,用悬滴法对其表面张力进行了测定,用动态光散射对其粒度分布进行了测定,用改进Ross-Miles法对样品的泡沫性能进行了测定.结果表明:合成的葡萄耱酰胺非离子双子表面活性剂(8/12/16)的临界胶束浓度(cmc)及γcmc分别为5.627×10-3 mol/L、4.42×10-4 mol/L、2.96×10-3 mol/L和36.20 mN/m、30.22 mN/m、46.35mN/m;双子表面活性剂溶液粒径分布在130~1050nm;双子表面活性剂泡沫性能良好.","authors":[{"authorName":"杨宗锋","id":"96e2d6f5-6ac5-4248-a8a6-cd052752cafc","originalAuthorName":"杨宗锋"},{"authorName":"闫顺杰","id":"5554ee90-e0ff-4680-8bdc-545b81aa6d27","originalAuthorName":"闫顺杰"},{"authorName":"杜斌斌","id":"9eb9d2ea-920b-4063-8472-4a23da6f1937","originalAuthorName":"杜斌斌"},{"authorName":"","id":"f60dc2ae-ae53-4003-86bf-5b3f2d97c6fe","originalAuthorName":"辛志荣"}],"doi":"","fpage":"61","id":"2ae04c49-ef5a-4bb1-8c5f-22d9745f84f5","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"743d0c14-05df-4f8b-b170-a3681132b5e9","keyword":"双子表面活性剂","originalKeyword":"双子表面活性剂"},{"id":"6caaab2c-14a4-4095-b9bd-de0ebe654aac","keyword":"葡萄糖酰胺","originalKeyword":"葡萄糖酰胺"},{"id":"88d51546-a49c-48ef-810a-61697ad72f6a","keyword":"表面活性","originalKeyword":"表面活性"}],"language":"zh","publisherId":"cldb201318016","title":"葡萄糖酰胺非离子双子表面活性剂的制备与表征","volume":"27","year":"2013"},{"abstractinfo":"全固态电变色器件制作工艺复杂,氢化(或锂化)工艺是制备WO3电变色器件的关键技术.本文主要论述氢化工艺的制备方法、工艺过程及实验结果等.","authors":[{"authorName":"黄士勇","id":"676a81ea-270a-472f-a073-aed181e3d7b0","originalAuthorName":"黄士勇"},{"authorName":"曲风钦","id":"d9c7c92d-f4fd-4841-8fec-1a5221399f78","originalAuthorName":"曲风钦"},{"authorName":"苗晔","id":"f27b1452-a70f-4ee5-a049-6fca5b19bc7e","originalAuthorName":"苗晔"},{"authorName":"孟兆坤","id":"45e0f2a4-6fc7-488f-867d-ba95cd2609de","originalAuthorName":"孟兆坤"},{"authorName":"","id":"cdba3187-1634-4c4d-8ff6-767fd1714902","originalAuthorName":"辛志荣"}],"doi":"","fpage":"417","id":"a77819a1-a894-4b1d-bd6a-4ebaeff72d99","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d5a02260-90bc-4e4e-a05e-4b6774f1bf2f","keyword":"电致变色","originalKeyword":"电致变色"},{"id":"8228f333-9f5b-4668-83ca-e9c3a1669f5e","keyword":"氢化","originalKeyword":"氢化"},{"id":"b0c53f01-46b0-4a4d-b0f5-16eb2651ef98","keyword":"透光率","originalKeyword":"透光率"}],"language":"zh","publisherId":"gncl200104030","title":"WO3电变色材料的氢化技术研究","volume":"32","year":"2001"},{"abstractinfo":"制备了不同碳链长度的二元环氧化合物,并使其与聚合度为8~9的聚氧乙烯(PEO)或SPAN80反应,合成了含有不同长度间隔链的双亲水基表面活性剂. 用傅立叶红外光谱仪和核磁共振仪对其结构进行了表征. 实验结果表明,具有疏水性间隔链的双亲水基表面活性剂具有良好的表面活性,其表面活性不仅比单亲水基表面活性剂的大,且可随着疏水间隔链长度的增加而增大. ","authors":[{"authorName":"","id":"e698f02f-83af-4a47-bc22-7378eb496b97","originalAuthorName":"辛志荣"},{"authorName":"丁永涛","id":"af99f9a9-f182-411b-8c74-ef132f5ac65e","originalAuthorName":"丁永涛"},{"authorName":"柯卓","id":"156e4639-7865-4d90-b48f-e38974482092","originalAuthorName":"柯卓"},{"authorName":"蔡传伦","id":"5466960a-10b8-4684-b546-7eddf4e28f7d","originalAuthorName":"蔡传伦"},{"authorName":"高瑛","id":"04793d17-aa7d-478f-8c5a-50a037d007e8","originalAuthorName":"高瑛"},{"authorName":"殷敬华","id":"dab1598c-827c-495e-9966-b7f7e05b90ae","originalAuthorName":"殷敬华"}],"doi":"10.3969/j.issn.1000-0518.2002.08.003","fpage":"723","id":"1a762d30-a0d8-47b8-8f2c-e9a4d07aaeed","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"9f13ce89-e716-4c9c-9fee-e7cd3be3c62c","keyword":"非离子表面活性剂","originalKeyword":"非离子表面活性剂"},{"id":"1ffc5c0b-bff6-4fd8-9b70-01fe6d6744ad","keyword":"环氧化合物","originalKeyword":"环氧化合物"},{"id":"c2fe652c-5aee-49a9-ae94-1bbed48343ab","keyword":"疏水间隔链","originalKeyword":"疏水间隔链"},{"id":"e911fd4f-9568-40c8-ab7d-b536d222a1ec","keyword":"聚氧乙烯","originalKeyword":"聚氧乙烯"},{"id":"b31012ae-b4fd-4f68-adb1-55165f86b3df","keyword":"合成","originalKeyword":"合成"}],"language":"zh","publisherId":"yyhx200208003","title":"新型非离子表面活性剂的合成与表征","volume":"19","year":"2002"},{"abstractinfo":"通过葡萄糖、丙烯酸羟乙酯和丁二胺反应,制备了含不饱和双键的糖基功能单体.采用傅里叶红外光谱和核磁共振氢谱对合成的产物进行结构表征确定.采用紫外光引发接枝聚合技术,将制备的不饱和糖单体接枝聚合到聚氨酯膜的表面,以衰减全反射模式下傅里叶红外光谱对表面接枝反应进行了确认.通过静态水接触角实验和血小板黏附实验,分别对改性聚氨酯膜表面的亲水性和血液相容性进行了研究,结果表明,改性聚氨酯膜表面的接触角从86°降低到45°,血小板的粘附量由14.36×103 cells/mm2减少到2.57×103 cells/mm2,亲水性明显增强,血液相容性显著改善.","authors":[{"authorName":"杜山山","id":"eafac458-ff8d-4c11-8787-1dc1eb35c8bd","originalAuthorName":"杜山山"},{"authorName":"赵春雨","id":"1efb5ef8-c9c8-4e56-a1f0-7cf0b647e7fe","originalAuthorName":"赵春雨"},{"authorName":"陈昊","id":"728f36f0-9cd4-427b-ab1e-decc98b7d3d1","originalAuthorName":"陈昊"},{"authorName":"罗时文","id":"72cc3e53-4481-4de4-ab68-c04b1e1b0feb","originalAuthorName":"罗时文"},{"authorName":"高萌萌","id":"8875302e-6bcf-4fe2-8294-fbae91d9cf90","originalAuthorName":"高萌萌"},{"authorName":"","id":"f2dcdf1a-94ab-400d-af92-dd7cf04b0790","originalAuthorName":"辛志荣"}],"doi":"10.11944/j.issn.1000-0518.2016.04.150259","fpage":"412","id":"44943096-39ae-400b-98c1-b67582e12960","issue":"4","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"1f399355-63c9-4f20-97cd-e06711b79e78","keyword":"糖功能单体","originalKeyword":"糖功能单体"},{"id":"038523e0-d7c1-43e9-a0fb-2cc3ac8c509f","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"fa7480d5-9173-42c0-9729-00d5324d7b86","keyword":"紫外光引发接枝聚合","originalKeyword":"紫外光引发接枝聚合"},{"id":"c55ba77a-acee-488e-b50f-7729fdd11836","keyword":"血小板粘附","originalKeyword":"血小板粘附"}],"language":"zh","publisherId":"yyhx201604006","title":"不饱和糖功能单体接枝聚氨酯膜的制备及其血液相容性","volume":"33","year":"2016"},{"abstractinfo":"介绍了超高贫子量聚乙烯(UHMWPE)纤维的各种表面改性方法,如低温等离子体改性、辐照接枝改性、化学氧化法改性等,重点讨论了这些方法对纤维复合材料的粘接性能和力学性能的影响,并对主要的纤维表面改性方法所具备的工艺特点、处理效果以及成本等作了对比分析,特别关注了近年来UHMWPE纤维的各种表面改性技术的进展,介绍了改性UHMWPE纤维的性能表征方法,对超高分子量聚乙烯纤维表面改性技术的工业化应用提出建议.","authors":[{"authorName":"徐绍魁","id":"f8f26dc5-ac35-432e-bb05-842439920ebf","originalAuthorName":"徐绍魁"},{"authorName":"董建东","id":"e4a2d8f3-f80a-418c-a388-6990b0a1cdc7","originalAuthorName":"董建东"},{"authorName":"","id":"5a9aa384-a1f4-47c0-ab33-9838222aee43","originalAuthorName":"辛志荣"}],"doi":"10.3969/j.issn.1001-4381.2010.z1.007","fpage":"32","id":"80ea564b-ad5a-4a42-86df-43cc6cd1ef77","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"5ad31c4f-e289-4911-bbe7-806ff8da3fb6","keyword":"超高分子量聚乙烯纤维","originalKeyword":"超高分子量聚乙烯纤维"},{"id":"9f480f40-0292-4d4c-8f6c-4ab794e702f8","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"e79f6510-0da8-4b9e-b452-566f4d821267","keyword":"辐照接枝","originalKeyword":"辐照接枝"},{"id":"332be86e-2c0e-45a4-ac51-a6c0ee686b67","keyword":"表面改性","originalKeyword":"表面改性"}],"language":"zh","publisherId":"clgc2010z1007","title":"超高分子量聚乙烯纤维表面改性的研究进展","volume":"","year":"2010"},{"abstractinfo":"找到了一个能够用矩阵法计算的新序参量,此参量既能给出有限数量格点时一维伊模型中存在相变,又能给出无限数量格点时相变消失的结果.利用此序参量求出了一个计算相变点的简洁近似公式.","authors":[{"authorName":"田树旬","id":"c54330c7-9418-4f19-acea-4ace4901156e","originalAuthorName":"田树旬"}],"doi":"","fpage":"153","id":"195b84dc-2cf1-4ff5-b5ae-051891ff69c7","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0b5100e5-1efb-4313-97d0-d8d72c94e4c6","keyword":"一维伊模型","originalKeyword":"一维伊辛模型"},{"id":"c92d5079-f68f-46e1-af35-edaf1223ca05","keyword":"相变","originalKeyword":"相变"},{"id":"58ac394a-4d55-4608-a4e5-f6519942b55b","keyword":"矩阵法","originalKeyword":"矩阵法"}],"language":"zh","publisherId":"dwwlxb201502013","title":"一维伊模型的相变-Ⅱ","volume":"37","year":"2015"},{"abstractinfo":"采用拉、压循环试验测试了Az31镁合金的包格效应(BE),并研究了BE的机制.测试结果表明:压缩预变形后反向拉伸出现明显的BE.而拉伸预变形后反向压缩出现反包格效应(RBE);且包格效应比反包格效应明显.循环拉、压加载过程中的显微组织和晶体取向演化研究结果表明,出现包格效应是由于预压缩时改变晶粒取向与反向拉伸时去孪生效应共同作用的结果:预拉伸变形虽然不改变晶粒取向,但使轴比c/a值降低,使反向压缩时发生孪生更加困难,从而导致反包格效应.","authors":[{"authorName":"盛光敏","id":"c9ab42e2-2133-4cf1-ab4a-f92cc2f52699","originalAuthorName":"盛光敏"},{"authorName":"张功庭","id":"4605e58a-d0ef-4a22-a466-7cbece4f00cf","originalAuthorName":"张功庭"},{"authorName":"阎春","id":"7536391b-61f0-4385-a48a-b623a665c2e2","originalAuthorName":"阎春"}],"doi":"","fpage":"615","id":"ab54f077-129d-4907-8e84-e186d56d0401","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"887c88d8-addc-42b0-b5f8-3e8cce9ff9e4","keyword":"AZ31镁合金","originalKeyword":"AZ31镁合金"},{"id":"caaeb69c-6323-40aa-aad7-462028c304ac","keyword":"包格效应","originalKeyword":"包辛格效应"},{"id":"47dcb88d-9b03-4a4f-b086-3a302ae69d87","keyword":"反包格效应","originalKeyword":"反包辛格效应"},{"id":"bfa9e8d6-f85c-4007-9b4c-a423e595353f","keyword":"晶粒取向","originalKeyword":"晶粒取向"}],"language":"zh","publisherId":"xyjsclygc201104011","title":"AZ31镁合金包格效应研究","volume":"40","year":"2011"},{"abstractinfo":"在哈密尔顿体系下,提出气体声波传播的一种新的谐振子模型,并引入群论确定气体声波传播过程中的分子振动模式、能级简并.新模型将气动声学声传播问题与分子振动关联起来.由于发展高效的薛定谔方程的数值计算方法,有利于联系分子的性质来解释声的传播.本文从此出发,用二阶有限差分格式和生成函数法构造的二阶格式分别计算一维定态谐振子势场和含时谐振子势场的薛定谔方程,分析了数值解的误差以及传播能量误差.结果表明算法具有明显的优势.","authors":[{"authorName":"涂运冲","id":"89ce3525-4bf5-4a81-9f5f-315f6693ed58","originalAuthorName":"涂运冲"},{"authorName":"谢军龙","id":"107df783-3691-4bac-b0d2-d3a5f79ab19b","originalAuthorName":"谢军龙"},{"authorName":"王嘉冰","id":"e8f75105-7121-4df8-8d8d-b3133fbb5071","originalAuthorName":"王嘉冰"},{"authorName":"张师帅","id":"e79e8205-deaa-457b-8697-73454f40c0a8","originalAuthorName":"张师帅"},{"authorName":"吴克启","id":"e123551e-9259-46f5-a518-15d6776ca313","originalAuthorName":"吴克启"}],"doi":"","fpage":"266","id":"2ee30482-c0fe-4aae-9670-9112bfc9cd98","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f7db380a-d4fb-4d4c-9dbd-7424595acd92","keyword":"哈密顿原理","originalKeyword":"哈密顿原理"},{"id":"fc4561d3-f506-49a8-939f-317715188622","keyword":"薛定谔方程","originalKeyword":"薛定谔方程"},{"id":"8f68545e-2626-4e47-8878-41fd8c7da370","keyword":"几何算法","originalKeyword":"辛几何算法"}],"language":"zh","publisherId":"gcrwlxb201402013","title":"和非算法求解薛定谔方程误差分析","volume":"35","year":"2014"},{"abstractinfo":"简述了一维定态Schr(o)dinger方程的形式、求解本征值问题的-矩阵法和-打靶法及在充分远空间计算线性无关解的保Wronskian算法.","authors":[{"authorName":"刘学深","id":"928b3ae5-60db-47a2-882b-1b42f59e7538","originalAuthorName":"刘学深"},{"authorName":"祁月盈","id":"99d4f1ad-b338-4d96-92a2-f1c555ec5588","originalAuthorName":"祁月盈"},{"authorName":"刘晓艳","id":"0c554a5c-ef4c-48f1-bffb-89c42f09a873","originalAuthorName":"刘晓艳"},{"authorName":"丁培柱","id":"f77f72a8-f4d5-4854-8da5-3a6c39e4a334","originalAuthorName":"丁培柱"},{"authorName":"周忠源","id":"c59f206d-53c1-4459-8759-86440c7fcf5b","originalAuthorName":"周忠源"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.041","fpage":"138","id":"77f113a9-53a4-4643-ad02-255745b5c251","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"9276d21d-290d-420e-a161-838132c11d82","keyword":"定态Schr(o)dinger方程","originalKeyword":"定态Schr(o)dinger方程"},{"id":"da44f9f4-c90e-4f65-8432-2cae6c841e69","keyword":"分立态","originalKeyword":"分立态"},{"id":"2341644b-d0c5-42dc-97c2-e2989aeeb260","keyword":"-打靶法","originalKeyword":"辛-打靶法"},{"id":"61c3cae6-1b88-4f58-94d3-b0f389348c33","keyword":"保Wronskian","originalKeyword":"保Wronskian"}],"language":"zh","publisherId":"yzhwlpl2002z1041","title":"强场物理中定态Schr(o)dinger方程的算法","volume":"19","year":"2002"}],"totalpage":31,"totalrecord":307}