{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文以浙江嘉兴乍浦港码头为依托,通过试验检测并结合分析讨论,研究比较了水下区和干湿交替区混凝土表层0~10 mm范围内氯离子含量的分布规律,确定了干湿交替区的表层氯离子含量峰值分布和对流区深度.结果表明,干湿交替区对流区氯离子含量在一定深度处存在着一个局部的峰值,之后随着深度的增加逐渐降低,该峰值出现的位置即认为对流区深度;水下区表层氯离子含量随深度的增加而降低,不存在局部峰值和对流区.试验检测数据表明混凝土码头干湿交替区对流区深度随高程的变化而波动,但整体上都在7 mm左右,从而为沿海混凝土结构的耐久性寿命预测提供了参考依据.","authors":[{"authorName":"王传坤","id":"dfba21f3-6115-47bd-b4b6-1197d4a353f8","originalAuthorName":"王传坤"},{"authorName":"高祥杰","id":"517788e2-8727-4428-a53c-ce1193d84997","originalAuthorName":"高祥杰"},{"authorName":"赵羽习","id":"98fcfc5c-c1f2-4d5a-88bd-2ddae8b70673","originalAuthorName":"赵羽习"},{"authorName":"金伟良","id":"bcbd6134-d48f-440c-aa69-23bb75681897","originalAuthorName":"金伟良"},{"authorName":"徐巧玲","id":"4a91ec8c-b696-4fd5-8fdf-c64eadf7c03e","originalAuthorName":"徐巧玲"}],"doi":"","fpage":"262","id":"056dd88c-7e8f-47bc-b276-2a0dd669e66b","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bd750354-716b-4455-b86d-a3e61eafa11e","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"1a1949a9-e5b0-4b5c-a93b-1cccd424ab55","keyword":"水下区","originalKeyword":"水下区"},{"id":"7207a8cd-4b1e-4c2f-ab5f-f76653003d93","keyword":"干湿交替区","originalKeyword":"干湿交替区"},{"id":"c129e321-f428-4b71-933a-8a698d4c18ce","keyword":"表层氯离子含量","originalKeyword":"表层氯离子含量"},{"id":"4bb5f80d-18f4-49f8-a302-49467aa00e9f","keyword":"对流区深度","originalKeyword":"对流区深度"}],"language":"zh","publisherId":"gsytb201002002","title":"混凝土表层氯离子含量峰值分布和对流区深度","volume":"29","year":"2010"},{"abstractinfo":"本文根据吸水性树脂遇水膨胀的性能特点,通过原位合成吸水性树脂对混凝土表层进行了处理.研究了混凝土经原位合成吸水性树脂表层处理前后的碳化性和氯离子渗透性;建立了碳化深度-初始电流-电通量之间相关性.试验结果表明:处于混凝土表层内的吸水性树脂吸水或吸湿后,变成膨胀水凝胶,密实了表层混凝土内的孔隙,提高了处理混凝土的碳化性能和氯离子渗透性能;随着碳化龄期的不断增长,混凝土的初始电流和氯离子电通量大幅度降低;混凝土的碳化深度与其电通量负相关.","authors":[{"authorName":"张丹","id":"f4136395-bccc-4f5f-8e71-2c6a1c693c17","originalAuthorName":"张丹"},{"authorName":"宋学锋","id":"072357f1-e7d7-4268-9d75-106775e4fc75","originalAuthorName":"宋学锋"},{"authorName":"阿廷树","id":"479429a4-12db-446a-9e23-5db53af1b483","originalAuthorName":"阿廷树"}],"doi":"","fpage":"1388","id":"c992cda5-bf8c-4f16-8ab3-1c05c1cb740d","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d1205c99-d747-452b-8139-ba57348a755e","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"4c291557-9279-4fe5-8b8b-3700f0440cb2","keyword":"表层处理","originalKeyword":"表层处理"},{"id":"f4055505-5272-491b-8c5d-4c1fe8886c84","keyword":"碳化深度","originalKeyword":"碳化深度"},{"id":"59604dde-8a56-4535-a2fe-eb16d440f9a4","keyword":"氯离子渗透","originalKeyword":"氯离子渗透"}],"language":"zh","publisherId":"gsytb201206010","title":"原位合成SAR表层处理混凝土的碳化性与氯离子渗透性研究","volume":"31","year":"2012"},{"abstractinfo":"使用不同配合比的混凝土试件及颗粒标准养护28 d后,浸泡在超纯水和5%的 NaCl 溶液中,采用表面渗透性测试仪(Autoclam)和氮气吸附法定期检测混凝土的表层渗水系数及微观孔结构,研究氯离子对混凝土表层渗水性能及水泥水化浆体微观结构的影响.结果表明,NaCl溶液浸泡会显著提高混凝土表层的抗渗能力,对PC1混凝土,浸泡90 d后,表层渗水系数为超纯水浸泡试件的0.91,150 d后仅为超纯水试件的0.76;氯离子浸入混凝土后,会使混凝土的孔结构细化,显著降低100 nm以下的小孔,实验中,PC1混凝土在NaCl溶液浸泡后,小于100 nm 的孔与超纯水浸泡相比减少了32.43%;PC2混凝土在 NaCl 溶液浸泡后,小于100 nm的孔相比减少了57.24%;NaCl 溶液浸泡下,水泥水化良好,结构较致密,氯离子对水泥浆体的水化过程有一定的促进作用.","authors":[{"authorName":"刘军","id":"4a577fb5-1fd5-4cd4-ac49-40bda332b986","originalAuthorName":"刘军"},{"authorName":"陈晓池","id":"8baa16ab-2149-4a45-b5ee-5c586f1bd685","originalAuthorName":"陈晓池"},{"authorName":"邢锋","id":"aa324425-d76c-4f8a-98cb-f767fae99392","originalAuthorName":"邢锋"},{"authorName":"王卫仑","id":"bbfab0e2-38e1-40de-9cf6-00a7747e7c26","originalAuthorName":"王卫仑"}],"doi":"10.3969/j.issn.1001-9731.2014.11.020","fpage":"11096","id":"5f369857-7a6c-4abc-95c7-cc6b9d29ec69","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3fab138e-9237-41c9-90d8-9eecc312c5e8","keyword":"表层渗水系数","originalKeyword":"表层渗水系数"},{"id":"f9930bc3-2b76-4df7-8690-d19f7cf37ab2","keyword":"孔结构","originalKeyword":"孔结构"},{"id":"3ff531b2-88cd-47e5-ae5e-ed43ab0aecf7","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"91021ef1-bd92-416d-a41b-64b2ab89063f","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"9beb8161-6c22-41ae-9d34-d1234261715e","keyword":"混凝土","originalKeyword":"混凝土"}],"language":"zh","publisherId":"gncl201411020","title":"氯离子渗透对混凝土表层渗水系数及微观结构的影响","volume":"","year":"2014"},{"abstractinfo":"针对氯离子选择性电极直接测定锌铟电解液中氯离子含量的方法,对离子强度调节剂的选择和用量、溶液酸度、硫酸锌浓度、铟浓度以及其他共存离子的影响进行了探讨.研究表明,在硫酸介质中加入冰醋酸和硝酸钾作离子强度调节剂,用氯离子选择性电极可以直接快速地测定锌铟电解液中氯离子含量,且溶液中铟离子浓度在0.04 g/mL以下、硫酸锌浓度在0.15 g/mL以下不干扰测定,样品中含有的各种杂质元素对测定也无明显干扰.将方法应用于锌铟电解液样品的测定,相对标准偏差小于6.0%,测定结果与比浊法一致.","authors":[{"authorName":"韦文业","id":"52ab2d7d-c1cd-4196-871b-3216ceb36ac7","originalAuthorName":"韦文业"}],"doi":"10.3969/j.issn.1000-7571.2011.08.015","fpage":"65","id":"5a738268-560b-429c-ba66-a994db94233d","issue":"8","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"3a86dc28-0d7f-4c66-b017-15e8abbf5315","keyword":"离子选择性电极","originalKeyword":"离子选择性电极"},{"id":"83e91636-e22a-4f80-b603-391110a67ac3","keyword":"锌","originalKeyword":"锌"},{"id":"d405060e-86d9-4bad-8d1a-5563830c5e50","keyword":"铟","originalKeyword":"铟"},{"id":"8c6662f7-3d10-4971-bed5-f68be11d88e9","keyword":"电解液","originalKeyword":"电解液"},{"id":"9491ad50-a940-44c4-8b95-08ecb03082a2","keyword":"氯离子","originalKeyword":"氯离子"}],"language":"zh","publisherId":"yjfx201108015","title":"氯离子选择性电极直接测定锌铟电解液中氯离子含量","volume":"31","year":"2011"},{"abstractinfo":"采用离子色谱法测定\"地沟油\"样品中钠离子氯离子含量,通过计算两者的比例关系确定样品中是否含有\"地沟油\".使用去离子水提取\"地沟油\"样品中钠离子氯离子.氯离子以20 nmol/L KOH溶液为淋洗液,AS19分离柱(250 mm ×4 mm)分离,抑制器电流112 mA;钠离子以20 nmol/L甲基磺酸(MSA)为淋洗液,CS12分离柱(250 mm ×4 mm)分离,抑制器电流59 mA;两者分离采用的其他相同色谱条件为:柱温、检测器温度30℃,电导检测器检测,进样量25 μL,流量1 mL/min,峰面积定量.氯离子的检出限为0.005 mg/L,在0~5 mg/L范围内有良好的线性关系(r2=0.999988);钠离子的检出限为0.001 mg/L,在0~5 mg/L范围内有良好的线性关系(r2=0.999926).氯离子平均加标回收率为94.2%,相对标准偏差(RSD)为2.4%;钠离子平均加标回收率为92.5%,RSD为2.7%.经测定、计算,正常食用油中钠离子氯离子的物质的量比约为1,而\"地沟油\"中钠离子氯离子的物质的量比高于4.\"地沟油\"中钠离子氯离子含量及其比例关系可作为判断\"地沟油\"的重要依据.","authors":[{"authorName":"张忠","id":"a1265c6a-f2f4-4e42-8f84-40e3d0f2c60a","originalAuthorName":"张忠"},{"authorName":"王力春","id":"af19c237-5038-4a88-ac65-1b216c0ba46a","originalAuthorName":"王力春"},{"authorName":"鲁蕴甜","id":"48c103b5-0c56-48d4-9462-7f9c0cf9eacc","originalAuthorName":"鲁蕴甜"}],"doi":"10.3724/SP.J.1123.2012.08053","fpage":"1113","id":"ae2a28af-2a1f-436f-9ee6-6da534f3d4d9","issue":"11","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"765b3445-c271-4283-a33c-3868a294b521","keyword":"离子色谱","originalKeyword":"离子色谱"},{"id":"c34c2d8a-6d6a-49d7-aca9-5303c15326da","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"49016e5a-de96-4742-a722-a4bcfa7ba106","keyword":"钠离子","originalKeyword":"钠离子"},{"id":"ecab79f1-a757-4dc2-a57b-f6714980ae15","keyword":"比例关系","originalKeyword":"比例关系"},{"id":"979bc621-dc1b-4cf9-9f80-fc784367a55a","keyword":"地沟油","originalKeyword":"地沟油"}],"language":"zh","publisherId":"sp201211005","title":"离子色谱法测定\"地沟油\"中钠离子氯离子含量及其比例关系","volume":"30","year":"2012"},{"abstractinfo":"将混凝土置于不同湿度空间,通过不同时间的毛细吸附,测试混凝土中自由氯离子浓度分布。分析了不同湿度、腐蚀时间和腐蚀溶液对混凝土中氯离子传输的影响。结果表明,随着混凝土内部相对湿度的降低,混凝土的毛细吸附能力增强。随着腐蚀时间的增长,氯离子的渗透深度逐步加深,且前期随吸附时间快速增加,后期增加速率降低。同时呈现出氯离子含量在混凝土表层增长较快,而内部较缓。复合离子的存在加速了混凝土的氯离子毛细吸收速度。","authors":[{"authorName":"王本臻","id":"49390661-a5a2-475a-b05d-e57a427f34bc","originalAuthorName":"王本臻"},{"authorName":"金祖权","id":"12bf85c0-968f-46f4-9cce-d198a3703ac1","originalAuthorName":"金祖权"},{"authorName":"卢峰","id":"20706004-c8ec-4ef2-9065-5ef282386002","originalAuthorName":"卢峰"},{"authorName":"曹元超","id":"a73c9992-d3de-475d-ba0f-4e8b83673f0c","originalAuthorName":"曹元超"},{"authorName":"李春龙","id":"a0950db5-30bf-40f8-8057-3f48e0488504","originalAuthorName":"李春龙"}],"doi":"","fpage":"864","id":"851853f4-347c-441f-9fb7-22a5f35d1ebb","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"51195191-2117-4860-9157-e067f85308f6","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"ddf2db6b-cb8c-4b4c-8640-a7d43437591b","keyword":"相对湿度","originalKeyword":"相对湿度"},{"id":"1fb4879c-d250-4775-bf30-a733db170005","keyword":"毛细吸收","originalKeyword":"毛细吸收"},{"id":"5af43b1b-7b10-45e7-b5f7-4fb3663e7612","keyword":"氯离子","originalKeyword":"氯离子"}],"language":"zh","publisherId":"fsyfh201210009","title":"非饱和混凝土中氯离子的毛细吸附","volume":"33","year":"2012"},{"abstractinfo":"为研究西部氯盐渍土介质中混凝土的氯离子扩散性,采用实验分析、微观扫描、理论预测相结合的方法,分析混凝土中氯离子含量与分布规律、氯离子对流区深度与峰值含量表层氯离子含量时变规律以及试件表层微观形貌,预测既定混凝土保护层厚度处达到钢筋锈蚀临界氯离子浓度所需时间.研究结果表明,沿扩散深度混凝土中自由氯离子含量与总氯离子含量均呈现出先增长后降低的趋势,二者具有很好的线性关系;存在明显的氯离子含量峰值,随浸泡时间的变化较小;随着浸泡时间的增加,对流区深度逐渐加大,表层氯离子含量逐渐增加,混凝土中Friedel's和Cl元素逐渐增多.理论分析结果显示,氯离子扩散系数随着扩散深度增加而增大,随浸泡时间增加而减小,使用寿命预测结果与工程实际混凝土结构腐蚀情况吻合较好,预测模型可用于西部氯盐渍土介质中混凝土结构使用寿命预测与分析.","authors":[{"authorName":"闫长旺","id":"05581257-5aea-48dc-bba0-b53559c878bf","originalAuthorName":"闫长旺"},{"authorName":"李杰","id":"46fef35c-0b82-40f1-9589-65a09e31ab1c","originalAuthorName":"李杰"},{"authorName":"张菊","id":"1f09daf1-c19c-4db6-83b5-fa676da02e9a","originalAuthorName":"张菊"},{"authorName":"刘曙光","id":"a01baabb-cfe6-4dcc-b0d8-4aa4ee343892","originalAuthorName":"刘曙光"}],"doi":"10.3969/j.issn.1001-9731.2016.02.013","fpage":"2060","id":"b275b9f3-fc93-4db2-8c23-53fafbd2d8db","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"94f3db17-226d-47d5-8d42-1c736d24d138","keyword":"普通混凝土","originalKeyword":"普通混凝土"},{"id":"26aec20d-f49e-4961-a553-853a686040d9","keyword":"自由氯离子","originalKeyword":"自由氯离子"},{"id":"99d6fa02-74da-406e-9bce-d6a4242e7f02","keyword":"微观扫描","originalKeyword":"微观扫描"},{"id":"4de0eb8b-d7f9-47b2-8542-0770e371e94f","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"24737243-c843-4777-bd35-46a5b3489951","keyword":"使用寿命","originalKeyword":"使用寿命"}],"language":"zh","publisherId":"gncl201602013","title":"西部氯盐渍土介质中混凝土的氯离子扩散性","volume":"47","year":"2016"},{"abstractinfo":"利用电化学阻抗谱技术, 研究X70 钢的最佳阴极保护电位随土壤中Cl和含水率的变化. 结果表明:在Cl含量< 10 mmol/kg 时最佳保护电位随着含水率的增加先升高后降低, 变化幅度在150 mV左右; Cl含量≥10 mmol/kg 时, 最佳保护电位随着含水率增加呈现降低的趋势; Cl含量为20 mmol/kg 时的不同含水率的土壤中最佳保护电位均达到最小值; 随着含水率的升高Cl对最佳保护电位的影响逐渐减小.","authors":[{"authorName":"李自力","id":"8b661400-5404-4792-9953-2d0caa6c46f2","originalAuthorName":"李自力"},{"authorName":"王太源","id":"31386bb8-bc52-4d35-aaef-8f7d4c5dd950","originalAuthorName":"王太源"},{"authorName":"郝宏娜","id":"7acf594e-6f60-443d-8039-4d3b776915b5","originalAuthorName":"郝宏娜"},{"authorName":"杜松林","id":"749c89de-ed74-427c-9fc7-da107afff824","originalAuthorName":"杜松林"},{"authorName":"崔淦","id":"d3f255b6-94ed-40c7-a8aa-48dff2b65797","originalAuthorName":"崔淦"}],"categoryName":"|","doi":"","fpage":"232","id":"4e020dec-8ca4-4964-a6d6-01ff4b3c0ade","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"3aec1f55-3d12-4afe-9d27-b544c74d670e","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"},{"id":"c2d91a51-d264-4af3-847d-6001db91a8f1","keyword":" optimal protection potential","originalKeyword":" optimal protection potential"},{"id":"dff11a64-0b55-44be-bc24-8df64271a2bd","keyword":" cathodic protection parameters","originalKeyword":" cathodic protection parameters"},{"id":"a557f863-b3db-4c55-b616-bb33ec0e4105","keyword":" moisture content","originalKeyword":" moisture content"},{"id":"02c34ab1-6113-4b0f-93e2-053cf4df2301","keyword":" chloride ion","originalKeyword":" chloride ion"}],"language":"zh","publisherId":"1002-6495_2012_3_8","title":"土壤含水率和氯离子含量对最佳保护电位的影响","volume":"24","year":"2012"},{"abstractinfo":"通过自然扩散法测定了矿渣混凝土中总氯离子和自由氯离子含量,获得了混凝土对氯离子的结合能力,研究了扩散深度、养护时间和矿渣掺量对氯离子结合能力的影响规律.结果表明,矿渣混凝土氯离子结合能力随着扩散深度的增加而逐渐增加;随着养护时间的延长,矿渣混凝土氯离子结合能力起初呈不断增大的趋势,当养护时间大于365 d时,增长趋势逐渐趋于稳定;随着矿渣掺量的增加,混凝土的氯离子结合能力呈先增加后减小的规律,氯离子结合能力最大时的矿渣掺量为30%.","authors":[{"authorName":"匡琪","id":"83631a61-46a2-490a-82e1-2548b1d17fb2","originalAuthorName":"匡琪"},{"authorName":"余红发","id":"1f6cecc3-77c5-4059-aa6d-051875a7a393","originalAuthorName":"余红发"},{"authorName":"张小平","id":"fe3e49ac-0611-4498-aedc-8a28c78f067a","originalAuthorName":"张小平"},{"authorName":"卢一亭","id":"2132d4ec-178d-4b5c-8e30-b0d8ac8dfb12","originalAuthorName":"卢一亭"},{"authorName":"胡蝶","id":"03973094-2de8-46fa-bc51-61165b89b1ef","originalAuthorName":"胡蝶"},{"authorName":"赖鸿鹏","id":"e2d0a820-6429-4afa-8b63-ec58dca39fb7","originalAuthorName":"赖鸿鹏"},{"authorName":"麻海舰","id":"3cf78c1f-1eea-4812-8b06-d17f41ffec69","originalAuthorName":"麻海舰"}],"doi":"","fpage":"3085","id":"400bff98-56dc-4e2f-85cd-d079cbf4caba","issue":"12","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"8cda3b9d-63e6-4bbf-aa2e-e68c01663f96","keyword":"矿渣混凝土","originalKeyword":"矿渣混凝土"},{"id":"a29733ed-dd3e-4362-b8ce-82c76f2efa08","keyword":"氯离子扩散","originalKeyword":"氯离子扩散"},{"id":"913b2ef8-40d3-4386-93a0-d2b2dfed0fda","keyword":"自然扩散法","originalKeyword":"自然扩散法"},{"id":"4dd7063e-5c55-491b-8399-778998a264c2","keyword":"氯离子结合能力","originalKeyword":"氯离子结合能力"},{"id":"720b754c-f483-4a18-821c-218d5860d2db","keyword":"扩散深度","originalKeyword":"扩散深度"}],"language":"zh","publisherId":"gsytb201412004","title":"矿渣混凝土的氯离子结合能力研究","volume":"33","year":"2014"},{"abstractinfo":"目前针对混凝土冻融损伤影响下的氯离子扩散系数衰减规律尚未建立完善模型.本文应用自然扩散方式对冻融损伤混凝土中的自由氯离子和总氯离子扩散性能进行了试验研究,分析了冻融损伤对混凝土中氯离子分布和扩散系数的影响,并将损伤度概念引入,建立了考虑冻融损伤影响的混凝土中氯离子扩散系数衰减模型.研究表明:随着混凝土冻融损伤的加剧,自由氯离子和总氯离子扩散系数逐渐增大,而氯离子扩散系数的衰减指数总体呈降低趋势;随着混凝土冻融损伤程度的加剧,混凝土深层扩散区的氯离子含量呈升高趋势,但浅层扩散区中的氯离子含量呈降低趋势.","authors":[{"authorName":"孙丛涛","id":"9f6557fc-da0d-465c-8e2a-0e3e3796493d","originalAuthorName":"孙丛涛"},{"authorName":"牛荻涛","id":"6142acdb-1059-46ea-9556-ac6290c7f4be","originalAuthorName":"牛荻涛"}],"doi":"","fpage":"1863","id":"33a47c74-3966-46e6-907e-a579ae0b0113","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"291fc801-2046-4ca4-8c9f-1fb3ec35bcd9","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"a2731022-7f64-4f48-bd29-1a84d67720cd","keyword":"冻融损伤","originalKeyword":"冻融损伤"},{"id":"c4bffde2-e9a5-4fde-a745-761ff6022cae","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"0bd17952-84ab-482b-9fc1-b473f5345b96","keyword":"扩散性能","originalKeyword":"扩散性能"}],"language":"zh","publisherId":"gsytb201408001","title":"冻融环境混凝土氯离子扩散性能试验研究","volume":"33","year":"2014"}],"totalpage":4603,"totalrecord":46030}