{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用极化曲线和电化学阻抗谱(EIS)等方法研究了模拟酸雨组分对1Cr18Ni9Ti不锈钢在土壤中腐蚀行为的影响。结果表明,酸雨组分对1Cr18Ni9Ti不锈钢腐蚀行为影响显著。随着SO42-与NO3-浓度比的减小,不锈钢的腐蚀速率减小,说明硫酸型酸雨对本体系的腐蚀性明显强于硝酸型酸雨。不锈钢的电化学阻抗谱表现为双容抗弧,其腐蚀过程主要受氧扩散过程控制。","authors":[{"authorName":"伍远辉","id":"d24570ef-cfac-450f-8247-f22d2d2fabfd","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"48ac3b97-21a9-423b-b723-45eccd93940d","originalAuthorName":"罗宿星"},{"authorName":"勾华","id":"79054c9c-8f48-428a-8e25-110a0acd544f","originalAuthorName":"勾华"},{"authorName":"孙成","id":"23eba5de-b7c9-4924-a60b-94b02104d0c9","originalAuthorName":"孙成"}],"doi":"","fpage":"378","id":"01e540e4-f823-474c-a045-dedb490a812f","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"2146ffde-d408-4855-9919-67bcfce7ef60","keyword":"1Cr18Ni9Ti不锈钢","originalKeyword":"1Cr18Ni9Ti不锈钢"},{"id":"7473b923-58f2-4b24-a6db-87c5330e7525","keyword":"酸雨","originalKeyword":"酸雨"},{"id":"81395d9e-6a1c-42f4-9bbc-f2c4a8267b02","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"},{"id":"5fcf98b6-89dc-457d-8450-d15e9b92ac14","keyword":"组分","originalKeyword":"组分"}],"language":"zh","publisherId":"fsyfh201205006","title":"模拟酸雨组分对1Cr18Ni9Ti不锈钢土壤腐蚀行为的影响","volume":"33","year":"2012"},{"abstractinfo":"利用极化曲线、电化学阻抗谱(EIS)和X射线衍射(XRD)等方法,研究了温度对试验土壤中碳钢腐蚀行为的影响。结果表明,在25-75℃试验温度范围内,随着土壤温度的升高,碳钢的腐蚀速率增加。碳钢的电化学阻抗谱由高频容抗弧和低频感抗弧组成,表现为两个时间常数,电荷转移电阻R随温度升高而减小,腐蚀过程受活化极化控制。碳钢表面的腐蚀产物主要由Fe2O3、Fe3O2、SiO2和Al2O3组成。","authors":[{"authorName":"伍远辉","id":"172a6c74-5f2a-4e63-9a25-37234f9b5f0c","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"506a10b4-83df-459e-840e-792a5daee06b","originalAuthorName":"罗宿星"},{"authorName":"王圣蜜","id":"6a949f57-e519-442c-b9f1-a1e69a893775","originalAuthorName":"王圣蜜"},{"authorName":"孙成","id":"2fbdbba5-1cc0-4e87-b940-cd831164cc17","originalAuthorName":"孙成"}],"doi":"","fpage":"513","id":"1e1a479f-2b13-4610-aa30-0215f635e337","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"92f273c5-f6e3-4d3a-ac59-d3ca6b426923","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"8adfef98-6ef4-427e-975f-ddf80b6fd6f3","keyword":"土壤","originalKeyword":"土壤"},{"id":"8145c05c-0101-4178-9b8b-436823f7074a","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"1314c6cd-e735-4299-b9a8-87b32c14dd3a","keyword":"温度","originalKeyword":"温度"}],"language":"zh","publisherId":"fsyfh201107004","title":"温度对土壤中碳钢腐蚀行为的影响","volume":"32","year":"2011"},{"abstractinfo":"利用极化曲线技术、电化学阻抗测试技术、扫描电镜等方法,研究了X70管线钢在不同湿度的两种青海盐湖边盐渍土壤中的腐蚀行为.结果表明,湿度对X70管线钢腐蚀的影响显著.随土壤湿度的增加,X70管线钢在盐湖盐渍土壤中的腐蚀速率也增加,当含水量增大到15%~20%时,腐蚀速率达到最大,然后腐蚀速率随着湿度增加而减小;X70管线钢在这两种盐渍土壤中,当其湿度相同时,盐含量高的土壤腐蚀较快.","authors":[{"authorName":"伍远辉","id":"0ca77917-210b-4ed0-a3dc-30de6a9df071","originalAuthorName":"伍远辉"},{"authorName":"孙成","id":"ff04ec91-748c-4068-b83c-94be7923c236","originalAuthorName":"孙成"},{"authorName":"张淑泉","id":"3c58ca8c-c7a0-46d2-b87a-e1dcd2296643","originalAuthorName":"张淑泉"},{"authorName":"蔡铎昌","id":"17941792-dd52-49be-8844-47b7ae8a7c1a","originalAuthorName":"蔡铎昌"},{"authorName":"李国华","id":"e7b53d7c-6326-43b5-b4b2-294035f11989","originalAuthorName":"李国华"},{"authorName":"刘霞","id":"989e36ad-240e-435d-845f-3cb35ae1ae3a","originalAuthorName":"刘霞"}],"categoryName":"|","doi":"","fpage":"87","id":"29eee8bb-a861-4455-98aa-028fd8153e53","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"90c32177-4a18-40b5-bd03-2b16eeae7f99","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"02e200b6-cfc0-4ab7-9d83-a7baaa8b8992","keyword":"null","originalKeyword":"null"},{"id":"43f69691-d8a9-4bbf-bcec-7207a930b212","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2005_2_16","title":"湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响","volume":"17","year":"2005"},{"abstractinfo":"采用电化学阻抗法、循环伏安法、计时电量法、差分脉冲伏安法等分析手段,研究了硫酸特布他林在石墨烯修饰玻碳电极(GR/GC)上的电化学行为及电化学动力学性质,建立了硫酸特布他林电化学定量测定方法.实验结果表明,硫酸特布他林在GR/GC电极上的电化学过程是一个不可逆电化学氧化过程,氧化过程受扩散控制,在扫描速度20 ~250mV/s范围内,其氧化峰电流与扫描速度平方根呈良好的线性关系.该方法可简便、快捷、灵敏地检测博利康尼中硫酸特布他林的含量.","authors":[{"authorName":"罗宿星","id":"74f7819c-22db-476f-bff4-35e8e13a0a19","originalAuthorName":"罗宿星"},{"authorName":"伍远辉","id":"db554112-2140-4f0e-988b-401743674977","originalAuthorName":"伍远辉"},{"authorName":"杨红","id":"932ce2e0-0a20-47e3-93c6-301895d4b986","originalAuthorName":"杨红"},{"authorName":"贾潘","id":"112ac254-d0dc-4d96-b86e-155e52ec6532","originalAuthorName":"贾潘"}],"doi":"","fpage":"112","id":"8c6f5404-7896-4d03-a4d8-ee7ac931146f","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"6374531c-6e6a-410c-95ec-ae17ea76dec6","keyword":"硫酸特布他林","originalKeyword":"硫酸特布他林"},{"id":"2c8afb45-b48d-4ff5-af08-4c3ccfec8ea9","keyword":"石墨烯修饰电极","originalKeyword":"石墨烯修饰电极"},{"id":"247b50bf-f4b2-42e6-98f4-94ce66134fa6","keyword":"电化学","originalKeyword":"电化学"},{"id":"9d28a538-edf6-4511-9286-98f4175ce783","keyword":"检测","originalKeyword":"检测"}],"language":"zh","publisherId":"bmjs201303031","title":"硫酸特布他林在石墨烯修饰电极上的电化学行为及应用分析","volume":"42","year":"2013"},{"abstractinfo":"利用电化学阻抗(EIS)、极化曲线、扫描电镜(SEM)和表面能谱(EDS)等测试方法,研究了微生物对Q235钢在黄壤土中腐蚀行为的影响.结果表明:微生物加速了Q235钢在黄壤土中的腐蚀;试样在接菌和灭菌黄壤土中的电化学阻抗谱均为单容抗孤,在接菌土壤中发生了阴极去极化,其腐蚀速率高于在灭菌土壤中的腐蚀速率;随着腐蚀的进行,Q235钢在接菌土壤中的腐蚀速率先减小后增加.","authors":[{"authorName":"伍远辉","id":"dcc7b6b0-a236-490b-a2ed-9ce52c859318","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"679ab775-1a2c-4626-b432-5b2fc5127ea9","originalAuthorName":"罗宿星"},{"authorName":"勾华","id":"14f30c42-8e03-4990-9e19-c19f8f8bda42","originalAuthorName":"勾华"},{"authorName":"孙成","id":"29a5865a-ae69-492d-954d-03859e7c078f","originalAuthorName":"孙成"}],"doi":"10.3969/j.issn.1001-3660.2011.02.010","fpage":"33","id":"a000a6af-fbb4-48c1-bbfc-7ed3919a8ace","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"02799275-ceca-4141-9b4e-c42231bdbfa6","keyword":"微生物","originalKeyword":"微生物"},{"id":"75dacbab-2e32-45f8-8fea-e204de8ed2ea","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"8c1569ac-2ea3-41d4-b16a-c80773e18a5e","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"},{"id":"19e5438c-5e8f-434d-a7bb-b6f76d95f24b","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"}],"language":"zh","publisherId":"bmjs201102010","title":"微生物对Q235钢在黄壤土中腐蚀行为的影响","volume":"40","year":"2011"},{"abstractinfo":"利用极化曲线技术、电化学阻抗测试技术、扫描电镜和表面能谱等方法,研究了Q235钢在不同湿度的污染土壤中的腐蚀行为.试验结果表明,湿度对Q235钢腐蚀的影响显著.随土壤湿度的增加,Q235钢在污染土壤中的腐蚀速率也增加,当含水量增大到20%时,腐蚀速率达到最大,然后腐蚀速率随着湿度增加而减小.Q235钢在湿度为20%的污染土壤中腐蚀后表面出现明显的裂痕和腐蚀坑.","authors":[{"authorName":"伍远辉","id":"9589c878-371d-4484-8486-365a4de5f3ca","originalAuthorName":"伍远辉"},{"authorName":"刘天模","id":"b8017fec-dede-4c5c-91fc-8080796d616c","originalAuthorName":"刘天模"},{"authorName":"罗宿星","id":"048bcf8a-3748-4272-bd93-24056e4d3d06","originalAuthorName":"罗宿星"},{"authorName":"孙成","id":"4fcb708b-626d-4081-8cc0-5335367fab83","originalAuthorName":"孙成"}],"doi":"10.3969/j.issn.1005-748X.2008.04.003","fpage":"178","id":"e40a0951-4380-43fc-aa7f-f09b427bb3ab","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"0e2486b2-f3b9-4cfc-984c-40dcad2b945c","keyword":"Q235钢","originalKeyword":"Q235钢"},{"id":"8482b40b-1ded-4d2e-bdb3-dcc0f33ed36b","keyword":"湿度","originalKeyword":"湿度"},{"id":"763de98a-bb5b-4c91-9d27-2d5be96296a4","keyword":"污染土壤","originalKeyword":"污染土壤"},{"id":"d37cb574-9299-431e-af74-9c31e67e1936","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"}],"language":"zh","publisherId":"fsyfh200804003","title":"湿度对Q235钢在污染土壤中腐蚀行为的影响","volume":"29","year":"2008"},{"abstractinfo":"用电化学阻抗谱(EIS)方法研究了混凝土钢筋浸泡在氯离子溶液中的阻抗谱特征,研究结果表明:浸泡初期,钢筋电化学阻抗谱为一半径很大的容抗弧,钢筋处于钝化状态;随着腐蚀的发展,钢筋的阻抗谱表现为双容抗弧,钢筋表面的钝化膜已破裂,钢筋发生了孔蚀,其腐蚀过程受电荷传递过程控制;在浸泡后期,阻抗谱低频段出现了Warburg阻抗,钢筋腐蚀转变为扩散过程控制.随着浸泡时间的延长,钢筋的电荷转移电阻减小,腐蚀速率增加.","authors":[{"authorName":"伍远辉","id":"92560a45-9280-4e56-b211-16f45aefe405","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"317ef19c-d57d-468b-a1d8-ea8dab917566","originalAuthorName":"罗宿星"},{"authorName":"付盈盈","id":"0df33898-0a20-43de-96e0-f9bee0ce885d","originalAuthorName":"付盈盈"},{"authorName":"肖英","id":"7bade360-0809-4678-ab39-00ddbe03253d","originalAuthorName":"肖英"},{"authorName":"孙成","id":"f081bc32-32ac-4075-be2f-c79fb47fd95b","originalAuthorName":"孙成"}],"doi":"10.3969/j.issn.1001-3660.2011.03.018","fpage":"65","id":"e954864c-a5ad-420c-b67d-6a57abd7a6f7","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"f236ab8a-033b-467a-a9f5-99c8263d9e1e","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"41185a97-3230-4d5d-99b0-56553703a259","keyword":"钢筋","originalKeyword":"钢筋"},{"id":"46b5ef3a-8323-4c00-96c3-1f2087ab0735","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"ba53c6ed-e936-4e05-9171-65c4ef0a1150","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"a2d606d2-eee6-439f-b1fa-56724ce0a2ea","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"}],"language":"zh","publisherId":"bmjs201103018","title":"氯离子环境下混凝土钢筋的电化学阻抗谱特征","volume":"40","year":"2011"},{"abstractinfo":"利用极化曲线技术、电化学阻抗测试技术、扫描电镜等方法,研究了X70管线钢在不同湿度的两种青海盐湖边盐渍土壤中的腐蚀行为.结果表明,湿度对X70管线钢腐蚀的影响显著.随土壤湿度的增加,X70管线钢在盐湖盐渍土壤中的腐蚀速率也增加,当含水量增大到15%~20%时,腐蚀速率达到最大,然后腐蚀速率随着湿度增加而减小;X70管线钢在这两种盐渍土壤中,当其湿度相同时,盐含量高的土壤腐蚀较快.","authors":[{"authorName":"伍远辉","id":"f98c3b6e-09ee-4367-b97e-16d7c80d88fb","originalAuthorName":"伍远辉"},{"authorName":"孙成","id":"82f5c2b6-9b54-43bb-afe6-c12a9d30956f","originalAuthorName":"孙成"},{"authorName":"张淑泉","id":"57aa852b-0fe6-49bb-aac3-c9b01dcf4eab","originalAuthorName":"张淑泉"},{"authorName":"蔡铎昌","id":"53f378bd-287d-4288-ba94-ca508bb72437","originalAuthorName":"蔡铎昌"},{"authorName":"李国华","id":"cedabdff-f130-47de-beab-ea8bacfd8ed9","originalAuthorName":"李国华"},{"authorName":"刘霞","id":"6992a235-4238-4c6f-87a8-b9dbaa9d162f","originalAuthorName":"刘霞"}],"doi":"10.3969/j.issn.1002-6495.2005.02.006","fpage":"87","id":"2735053d-b885-4a24-9560-f8e25cf2535c","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"0cb2c9d7-5865-46b7-a82f-94b950d1293a","keyword":"X70管线钢","originalKeyword":"X70管线钢"},{"id":"3b11eb82-6968-4521-9abf-cfe403cd6d03","keyword":"湿度","originalKeyword":"湿度"},{"id":"accb9767-c1b5-40d0-9b71-9b50b19a348f","keyword":"盐渍土","originalKeyword":"盐渍土"},{"id":"735da8bd-77c7-43e7-a218-7d8ae55dd923","keyword":"土壤腐蚀","originalKeyword":"土壤腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200502006","title":"湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响","volume":"17","year":"2005"},{"abstractinfo":"运用循环伏安法在光滑的铂电极表面上修饰了稀土多金属氧酸盐,并用交流阻抗进行了表征,研究了该电极对甲醇的电催化氧化行为.实验结果表明,与未修饰的光滑的铂电极相比,稀土多金属氧酸盐修饰的电极对甲醇电催化氧化速率明显增加.并测定了该修饰电极电催化氧化的动力学参数.","authors":[{"authorName":"勾华","id":"d1464e32-7fa8-4d4a-b9cd-dd3df19a8f07","originalAuthorName":"勾华"},{"authorName":"伍远辉","id":"ee9386d6-2c99-457c-b34d-7c93da2b094e","originalAuthorName":"伍远辉"},{"authorName":"罗宿星","id":"bc04e80b-fdf8-4e5b-b3ee-b156a5aed4cc","originalAuthorName":"罗宿星"}],"doi":"10.3969/j.issn.1001-3660.2010.02.012","fpage":"38","id":"502c7c1c-28a5-400b-b86a-1010f7b35ac6","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"84a669a6-e512-46bc-8e2a-41a9745a37e3","keyword":"稀土多金属氧酸盐","originalKeyword":"稀土多金属氧酸盐"},{"id":"fc35d8e4-bd0b-4e7b-b635-86d6c69b657e","keyword":"电催化氧化","originalKeyword":"电催化氧化"},{"id":"fbe9eef4-c26d-499b-b798-def133709778","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"87d274d5-4aa0-4eb3-9767-c4f9a014f6e2","keyword":"动力学参数","originalKeyword":"动力学参数"}],"language":"zh","publisherId":"bmjs201002012","title":"稀土多金属氧酸盐修饰铂电极对甲醇电催化氧化的促进作用","volume":"39","year":"2010"},{"abstractinfo":"利用极化曲线、电化学阻抗、扫描电镜和表面能谱等方法,研究了硫酸盐还原菌对X70钢在土壤中宏电池腐蚀的影响.结果表明,接菌或灭菌粘土和砂土组成的宏电池,砂土中试样为宏电池的阴极,粘土中试样为阳极;随实验时间的增加,接菌及灭菌粘土中自然埋藏X70钢腐蚀速率逐渐减小,而砂土中宏电池阳极的腐蚀速率一直相当高;接菌土壤宏电池的电流和电动势比灭菌的大,接菌及灭菌粘土中阳极的腐蚀速率分别是自然腐蚀速率的4.93和2.45倍;在宏电池阴阳极面积比15∶1情况下,接菌及灭菌粘土中宏电池阳极的腐蚀速率分别为宏电池阴阳极面积比11时的5.01及2.33倍.","authors":[{"authorName":"伍远辉","id":"3360dfcc-966d-427e-88ef-c88c7da3cf6b","originalAuthorName":"伍远辉"},{"authorName":"孙成","id":"7e954ce6-8329-40d0-9737-9dcc93f83b47","originalAuthorName":"孙成"},{"authorName":"勾华","id":"9976c10c-84a2-48d6-95f4-536a7b3d3e0d","originalAuthorName":"勾华"}],"categoryName":"|","doi":"","fpage":"98","id":"94a7098f-c6d5-4000-beab-73e726119d7f","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"a363a45b-2eaf-48cc-adc1-cdba9aad92c7","keyword":"硫酸盐还原菌","originalKeyword":"硫酸盐还原菌"},{"id":"fa1b9bab-0bee-4853-a086-67f6d70b26f5","keyword":"null","originalKeyword":"null"},{"id":"ab114aa5-873c-4f8e-aa59-34be419b840e","keyword":"null","originalKeyword":"null"},{"id":"0eed7156-ebd5-48a2-a2e3-e1d8b3e2defe","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2007_2_14","title":"硫酸盐还原菌对X70钢土壤宏电池腐蚀的影响","volume":"19","year":"2007"}],"totalpage":103,"totalrecord":1021}