{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"测定了室温下涂碳前后化学气相沉积法(CVD)制备的国产SiC纤维的抗拉强度,发现威布尔分布可以较好地描述SiC纤维的抗拉强度的统计分布.分析得出以下结论,涂碳后与涂碳前的纤维抗拉强度的Weibull模数,及其平均抗拉强度相比,前者明显高于后者.涂碳后SiC纤维的表面缺陷大大减小.随着标距和应变速率的增加,纤维的平均强度逐渐下降,而Weibull模数基本不变.并对断口进行分析,结果表明SiC纤维呈明显的脆性断裂.","authors":[{"authorName":"刘翠霞","id":"2c72d889-4f18-4cf4-a9de-3c2df1044832","originalAuthorName":"刘翠霞"},{"authorName":"杨延清","id":"5252db81-1a9d-4a44-beff-dc760e05ee8a","originalAuthorName":"杨延清"},{"authorName":"荣军","id":"68d50ae3-8819-4516-8814-f34e36362fce","originalAuthorName":"张荣军"},{"authorName":"任晓霞","id":"791ac806-310c-4395-8157-78f452a61830","originalAuthorName":"任晓霞"}],"doi":"10.3969/j.issn.1001-4381.2009.02.015","fpage":"63","id":"1d25db02-cf90-4737-8126-49d4ac726c9f","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"8a2dd03d-cf74-4114-b358-9dda735eb7da","keyword":"CVDSiC纤维","originalKeyword":"CVDSiC纤维"},{"id":"287514c6-d58b-4759-be13-ad6fa5b67707","keyword":"Weibull模数","originalKeyword":"Weibull模数"},{"id":"4e343f6d-ded8-4631-89d4-680fb3aa7b09","keyword":"碳涂层","originalKeyword":"碳涂层"}],"language":"zh","publisherId":"clgc200902015","title":"涂碳前后SiC纤维的强度测试和评价","volume":"","year":"2009"},{"abstractinfo":"通过在纯铜中添加Sn、Zn元素铸造试样,采用阳极极化测定法研究在弱酸(pH值为6)、弱碱性(pH值为8)溶液中Sn、Zn两元素对铜合金腐蚀行为的影响.试验结果显示,含5%Sn的铜合金在弱酸性溶液中能形成更加致密和稳定的钝化膜,从而提高铜合金的耐蚀性;在弱碱性溶液中, Sn、Zn对提高铜合金的耐蚀性作用不明显.","authors":[{"authorName":"荣军","id":"c101850e-cf0d-43e5-8eee-42aed6fffaec","originalAuthorName":"张荣军"},{"authorName":"天明","id":"05d9eb7b-cf9a-4ca9-807e-656857651ae0","originalAuthorName":"张天明"}],"doi":"10.3969/j.issn.1005-748X.2007.02.004","fpage":"65","id":"23d5974e-bafb-43e0-9bb0-5f45e8da9a36","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"17269f04-1161-49f3-87d8-3dbbf67fca5d","keyword":"铜","originalKeyword":"铜"},{"id":"7a31e881-8c6c-4b8e-8ac0-bdfd385839a4","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"80ee38ef-6283-47ff-b8ea-863089b92c0b","keyword":"锡","originalKeyword":"锡"},{"id":"9b66637e-14fc-4c15-9380-24cbafdf2cd1","keyword":"锌","originalKeyword":"锌"}],"language":"zh","publisherId":"fsyfh200702004","title":"锡、锌对铜合金耐腐蚀性的影响","volume":"28","year":"2007"},{"abstractinfo":"在化学气相沉积SiC膜过程中, 分别考虑了化学反应的动力学以及基底表面原子的沉积与扩散, 利用动力学蒙特卡罗方法, 建立了SiC膜{111}取向的三维原子尺度模型, 使用MATLAB模拟了原子尺度的SiC膜{111}取向生长过程. 模拟结果表明: 膜的生长经历了小岛的生成、小岛的合并与扩展、小岛间达到动态平衡三个阶段. 随着温度的升高, 膜的生长速率、表面粗糙度以及膜的厚度都增大. 随着生长速率的增大, 表面粗糙度增大, 相对密度减小. 模拟结果与理论和实验具有较好的吻合性.
","authors":[{"authorName":"刘翠霞","id":"fc08575b-40b1-457d-bca0-8eac0a65bc80","originalAuthorName":"刘翠霞"},{"authorName":"杨延清","id":"f811e908-8d49-4ff2-993e-2cf194197cb3","originalAuthorName":"杨延清"},{"authorName":"黄斌","id":"98c74cf4-c229-4fa9-b4ab-8eb192b9dad4","originalAuthorName":"黄斌"},{"authorName":"荣军","id":"0e7d1c21-024c-4d02-b008-d3897ab59f40","originalAuthorName":"张荣军"},{"authorName":"罗贤","id":"a360ab13-77d7-4953-a785-7a5ceef1c205","originalAuthorName":"罗贤"},{"authorName":"任晓霞","id":"367b543d-547f-4ae4-aae9-4ada0e0de0dd","originalAuthorName":"任晓霞"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00933","fpage":"933","id":"241f4c53-04e7-43d1-bd20-0eddb20d0d38","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e102912a-3831-423d-b82f-76600d555234","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"5ec75689-d335-422b-8128-0f79a1f99d6f","keyword":" chemical vapor deposition","originalKeyword":" chemical vapor deposition"},{"id":"dd924042-eeba-4a67-8797-333cc5d20541","keyword":" kinetic monte carlo simulation","originalKeyword":" kinetic monte carlo simulation"},{"id":"a779b953-450b-4294-8f97-226a873d2bea","keyword":" surface roughness","originalKeyword":" surface roughness"},{"id":"7058dc5f-f622-4113-a9fd-5ae27cd13902","keyword":" relative density","originalKeyword":" relative density"}],"language":"zh","publisherId":"1000-324X_2008_5_38","title":"化学气相沉积SiC膜{111}取向生长的原子尺度模拟","volume":"23","year":"2008"},{"abstractinfo":"采用十字形试样测试分析有C涂层和无C涂层两种SiC纤维增强钛基复合材料的横向力学性能,以横向载荷作用下应力-应变曲线上的非线性拐点计算界面的强度.结果表明,有C涂层的界面横向开裂强度为53 MPa,低于无C涂层的界面开裂强度196 MPa,并且前者在横向载荷作用下沿C涂层与纤维之间开裂,而后者沿反应生成物与基体间开裂;体积分数为30%的多根纤维钛基复合材料的非线性拐点应力低于单根纤维复合材料,这主要是由于残余应力的减少引起,界面强度并没有明显变化.","authors":[{"authorName":"李建康","id":"0a19e1db-09c9-4ff8-9abc-1f16fe5b972f","originalAuthorName":"李建康"},{"authorName":"杨延清","id":"e6ab73a0-2320-42e7-90ae-4cbc5c953225","originalAuthorName":"杨延清"},{"authorName":"罗贤","id":"3a461777-4f01-44e9-bab2-f80dd569f2a4","originalAuthorName":"罗贤"},{"authorName":"荣军","id":"89e1fbac-d229-4613-bc12-68298064f67e","originalAuthorName":"张荣军"}],"doi":"","fpage":"426","id":"2443ae41-0acc-4351-b4c3-11e7e2513b84","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5dfd5fa6-eff1-4e2a-9554-3643006093cd","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"8e9be7dc-663e-4c94-8b35-8d332bfcc96e","keyword":"横向力学性能","originalKeyword":"横向力学性能"},{"id":"231444a1-5de4-4faf-a8a2-d1a5cb287459","keyword":"界面强度","originalKeyword":"界面强度"}],"language":"zh","publisherId":"xyjsclygc200903012","title":"SiC纤维增强钛基复合材料的横向力学性能","volume":"38","year":"2009"},{"abstractinfo":"以丙烯酸甲酯、(卤代)苯乙烯为原料,利用原子转移自由基聚合技术、从主干接枝的合成策略和聚丙烯酸甲酯的碱性水解,实现了两亲性接枝共聚物聚丙烯酸-g-聚(卤代)苯乙烯的可控合成.主链和侧链的分子量可分别通过调整单体与引发剂的投料比和反应时间进行控制.(卤代)苯乙烯单体接枝共聚时,采用单体过量的本体聚合且单体转化率控制在10%以内,可制得分子量分布小于1.30的接枝共聚物,取代基的吸电子能力越强,接枝聚合速率越快.","authors":[{"authorName":"彭丹","id":"481cc0b3-6185-431f-9848-bd8099fa6f77","originalAuthorName":"彭丹"},{"authorName":"晓环","id":"adc23f33-548a-4419-b4f3-53a44e1c3a19","originalAuthorName":"张晓环"},{"authorName":"刘小兰","id":"756a7eec-169c-48d2-8260-57ea99e0bcd2","originalAuthorName":"刘小兰"},{"authorName":"荣军","id":"679a42fa-3520-4fd5-a7fa-b3838a0f88cf","originalAuthorName":"张荣军"}],"doi":"","fpage":"9","id":"408589fb-40ce-4595-9541-e5a5a02c3fe3","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6d948fe0-3238-4f69-946a-b47aa941a98b","keyword":"原子转移自由基聚合","originalKeyword":"原子转移自由基聚合"},{"id":"79794db4-081b-44e3-b757-68b2873e9087","keyword":"两亲性","originalKeyword":"两亲性"},{"id":"b1b68a7c-f330-421d-baf6-e8af69d0979c","keyword":"接枝共聚物","originalKeyword":"接枝共聚物"},{"id":"a7d88426-a3de-4468-82cd-f03019ddc355","keyword":"聚丙烯酸","originalKeyword":"聚丙烯酸"},{"id":"0eb5fd1f-3c90-4d7a-94fb-a71f4c8d3771","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"}],"language":"zh","publisherId":"gfzclkxygc201103003","title":"聚丙烯酸-g-聚(卤代)苯乙烯两亲性接枝共聚物的可控合成","volume":"27","year":"2011"},{"abstractinfo":"使用三纤维/基体有限元模型研究了纤维失效和基体屈服后钛基复合材料内微区应力分布,\n结果表明: 钛基复合材料内纤维失效端面的轴向应力降为0, 承载能力降低,\n相邻基体和未失效纤维的承载能力升高;随着纤维体积分数的增大,\n失效后应力和失效前应力的比值增大; 当中心纤维断裂时,\n纤维体积分数高的复合材料立即失效, 且失效形式为共面失效; 对于纤维体积分数低的复合材料,\n基体屈服对纤维与基体之间的载荷传递有重要的影响.","authors":[{"authorName":"原梅妮","id":"dcda0b30-28b5-4140-a6b5-65269463921b","originalAuthorName":"原梅妮"},{"authorName":"杨延清","id":"0c5b593c-fd97-4473-b596-f4ff025f3c5d","originalAuthorName":"杨延清"},{"authorName":"罗贤","id":"3871fa44-77ae-43ad-95ac-65bb8e7ab477","originalAuthorName":"罗贤"},{"authorName":"荣军","id":"5f6d0aec-b6b1-4eaf-a154-e95334dbc2b4","originalAuthorName":"张荣军"}],"categoryName":"|","doi":"","fpage":"389","id":"6f36d9dd-64b4-43de-913e-4c7c7ab7d5db","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"0e8c93e2-969f-40b9-b0f6-331c6ee4666f","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"0db59007-13e9-4ffd-ac9c-22462e8ea045","keyword":"null","originalKeyword":"null"},{"id":"9f07afd0-cc56-4994-aade-ac4b599984ed","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2008_4_8","title":"钛基复合材料中的微区应力分布","volume":"22","year":"2008"},{"abstractinfo":"采用直流电热化学气相沉积(CVD)法制备出高强度SiC纤维(W芯),采用拉伸试验、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等对SiC纤维的强度、相组成、断口特征及微观结构进行了分析.结果表明,CVD-SiC纤维主要由β-SiC组成;制备过程中W芯同SiC发生化学反应,产生厚度约300 nm的界面反应层,且反应层处存在着较大的残余拉应力;高强度SiC纤维裂纹产生于W/SiC界面反应层处,而低强度SiC纤维的裂纹源多处于W芯内部或纤维表面.","authors":[{"authorName":"沈文涛","id":"ac687e7f-c095-4a22-b887-30e9c8d502d6","originalAuthorName":"沈文涛"},{"authorName":"杨延清","id":"fd03076f-e01b-4756-92a6-394fafcd61b2","originalAuthorName":"杨延清"},{"authorName":"荣军","id":"6ef2261b-eea9-4b19-b125-e2fb67995bc5","originalAuthorName":"张荣军"},{"authorName":"刘翠霞","id":"3471f1ee-14e0-4286-8930-5a2701a856ac","originalAuthorName":"刘翠霞"}],"doi":"","fpage":"491","id":"849a5654-8926-42d4-b502-701b18b742c4","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8f1436af-c4f6-47cc-8daf-48c38b02e85e","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"1c0d7fe8-19a0-440a-9df6-40fad806a57f","keyword":"W/SiC界面反应层","originalKeyword":"W/SiC界面反应层"},{"id":"00ad3ad1-47b9-44fc-aa86-b689c513682e","keyword":"裂纹源","originalKeyword":"裂纹源"}],"language":"zh","publisherId":"xyjsclygc201103025","title":"W/SiC界面反应层对SiC纤维拉伸断裂行为的影响","volume":"40","year":"2011"},{"abstractinfo":"Sn、Zn元素在提高铜的耐腐蚀性和改善铜合金的力学性能等方面应用十分广泛,但在我国,从改善合金成分的角度围绕铜及铜合金的电化学基础数据却很少.为此,通过铸造得到Cu-5Sn、Cu-5Zn二元合金和Cu-5Sn-5Zn三元合金,采用阳极极化测定法和定电流还原法研究了其在弱酸性(pH=6)溶液中的腐蚀行为.结果显示,含5%Sn的铜合金在弱酸性溶液中能形成更加致密和稳定的钝化膜,从而提高铜的耐蚀性;添加5%Zn可以增加铜合金的膜层厚度,但对提高铜的耐蚀性作用不明显.","authors":[{"authorName":"荣军","id":"11c214cd-5864-488f-a7b9-d9aa833f8b0a","originalAuthorName":"张荣军"},{"authorName":"天明","id":"716faef2-77ac-465c-9a66-e7535b4a5177","originalAuthorName":"张天明"}],"doi":"10.3969/j.issn.1001-1560.2007.11.008","fpage":"22","id":"8ad0d3ba-7e43-48d2-a037-345e0a54a7c2","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"817fbf9b-0f82-438d-b64d-e2ff23537810","keyword":"铜","originalKeyword":"铜"},{"id":"3019825b-bb9b-4ebb-9b03-c2d0cb00c6f9","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"5df6cefc-0a72-48a6-8429-71cf473214e6","keyword":"锡","originalKeyword":"锡"},{"id":"aeb1b218-ec8a-4d5e-a341-1a6b71bfcb4b","keyword":"锌","originalKeyword":"锌"},{"id":"de23a8d6-1298-4164-bc9c-0b661ae5caa0","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"}],"language":"zh","publisherId":"clbh200711008","title":"添加少量Sn和Zn对铜在弱酸性介质中耐蚀性的影响","volume":"40","year":"2007"},{"abstractinfo":"采用阳极极化测定法研究了在弱酸(pH=6)、弱碱性(pH=8)溶液中Sn、Zn两元素对铜腐蚀行为的影响.试验结果显示,含Sn 5%(w)的铜合金在弱酸性溶液中能形成更加致密和稳定的钝化膜,从而提高铜的耐蚀性;在弱碱性溶液中, Sn、Zn对提高铜的耐蚀性作用不明显.","authors":[{"authorName":"荣军","id":"4514fbbc-de3f-4685-8e1f-c565b50377c8","originalAuthorName":"张荣军"},{"authorName":"天明","id":"cfcfa741-a2b7-4646-bb72-bd7bd3ff77d9","originalAuthorName":"张天明"}],"doi":"10.3969/j.issn.1003-1545.2006.04.005","fpage":"16","id":"9a6be4e7-a56f-4f75-a360-d4777add95f3","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"32c2376f-6010-475b-b173-6d9e662c2a5c","keyword":"铜","originalKeyword":"铜"},{"id":"6c31ff4a-65b2-4194-a0fa-2e8a4f18561c","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"9686a952-47f3-48ab-8ed2-4fb161dac0fa","keyword":"锡","originalKeyword":"锡"},{"id":"f48a1494-1cae-4139-9e01-96da568e029e","keyword":"锌","originalKeyword":"锌"}],"language":"zh","publisherId":"clkfyyy200604005","title":"Sn、Zn元素对铜耐蚀性的影响","volume":"21","year":"2006"},{"abstractinfo":"用箔-纤维-箔法制备SiC纤维增强Ti-6Al-4V复合材料,研究复合材料在加载频率f=10Hz、应力比R=0.1、最大应力σmax=300 MPa条件下的疲劳裂纹扩展速率(da/dN),并采用扫描电子显微镜对疲劳破坏断口进行观察和分析.结果显示,在该加载条件下,复合材料第Ⅱ阶段疲劳裂纹扩展速率符合高斯函数.断口观察表明,复合材料的基体在裂纹稳态扩展区出现明显的疲劳条带,复合材料的疲劳损伤可以分为纤维断裂、基体开裂和纤维/基体界面脱粘等多种形式.","authors":[{"authorName":"王海丽","id":"38e627bc-c0d2-4079-bf32-43bc1116c060","originalAuthorName":"王海丽"},{"authorName":"杨延清","id":"00fbe3c6-6e97-4f17-8cd7-ee36e97aca00","originalAuthorName":"杨延清"},{"authorName":"冯广海","id":"98c0c06b-1ad9-462e-baab-8fd86004a018","originalAuthorName":"冯广海"},{"authorName":"罗贤","id":"d9d2402c-65a6-4c8c-816f-f8f2143e8e44","originalAuthorName":"罗贤"},{"authorName":"荣军","id":"88f25973-8a7d-4028-a3c0-2ee58f7ac3d4","originalAuthorName":"张荣军"},{"authorName":"刘斌","id":"59af29ee-0f2a-4e76-81cc-8c12d16bbf1c","originalAuthorName":"刘斌"}],"doi":"","fpage":"635","id":"b91d13d6-fd13-4835-8e03-a3cfdfd1d6a1","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"73efe1db-9e9d-4b03-ba9f-e07f0d8ce6a7","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"64ea3acc-02f7-417e-9616-89cb91062fa8","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"2305bae9-875b-4069-90f5-2400ecca7def","keyword":"疲劳裂纹","originalKeyword":"疲劳裂纹"},{"id":"d36328aa-4e97-4192-b265-c65e68db2e84","keyword":"扩展速率","originalKeyword":"扩展速率"}],"language":"zh","publisherId":"xyjsclygc201204016","title":"SiC维纤增强钛基复合材料的疲劳裂纹扩展速率","volume":"41","year":"2012"}],"totalpage":23,"totalrecord":227}