{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了纳米带的研究进展.重点介绍了纳米带的定义,纳米带的特点,纳米带的制备方法,纳米带的生长机理,并对纳米带的潜在应用做了介绍.","authors":[{"authorName":"杨枣","id":"e7a2092e-b960-4f69-b90d-8d02e50db4fb","originalAuthorName":"杨枣"},{"authorName":"彭坤","id":"5fb7777a-81d2-48b0-bcf5-5abfd76da366","originalAuthorName":"彭坤"},{"authorName":"","id":"b82fd357-6592-40dd-9751-0403759b96ad","originalAuthorName":"袁缓"},{"authorName":"刘富生","id":"ff422f44-268d-41c8-b351-a524f5e0b3a9","originalAuthorName":"刘富生"},{"authorName":"胡爱平","id":"b64f7fd0-6724-4d6a-9a7d-a17f7aed6bb7","originalAuthorName":"胡爱平"}],"doi":"10.3969/j.issn.1005-0299.2006.05.024","fpage":"538","id":"e2d3bbe4-93d1-45ed-85f4-98beb06406f0","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"6b8ad895-7830-436b-a408-2360d59c3033","keyword":"纳米带","originalKeyword":"纳米带"},{"id":"14d4ffe1-9160-4084-bd37-cc19af3e79bd","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"a07645ec-d9a6-484b-8157-221e496566fd","keyword":"制备方法","originalKeyword":"制备方法"}],"language":"zh","publisherId":"clkxygy200605024","title":"纳米带的研究进展","volume":"14","year":"2006"},{"abstractinfo":"","authors":[],"doi":"","fpage":"15996","id":"89f0c0e1-ef04-497b-aca3-75a825cec69c","issue":"16","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fac82d8b-22c9-4289-8748-21715dca362d","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"gncl201516003","title":"家虎研究员简介","volume":"","year":"2015"},{"abstractinfo":"研究了以氯化铵、甲醛、三氯化磷为原料一步法合成ATMP的最佳条件,活笥成分达66.6%,将ATMP和复配后的ATMP蚀、阻垢性能进行了比较,结果表明复配后其蚀、阻垢性能有显著提高。 ","authors":[{"authorName":"李红霞","id":"78f437a4-bcef-4837-9fb1-cc48f50542a3","originalAuthorName":"李红霞"}],"categoryName":"|","doi":"","fpage":"247","id":"8a66ef0e-e8fa-49c9-bf6c-722e270adc16","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"48b3f6a5-95ff-41d0-9fde-b452ef250c42","keyword":"氮基三甲叉膦酸","originalKeyword":"氮基三甲叉膦酸"},{"id":"0a3da875-57d9-4af4-a8e9-e1a8bd6acdfe","keyword":"mmion inhibition","originalKeyword":"mmion inhibition"},{"id":"223b2e76-9808-4591-85a9-3365e57a4200","keyword":"scale inhibition","originalKeyword":"scale inhibition"}],"language":"zh","publisherId":"1002-6495_2000_4_13","title":"ATMP蚀阻垢性能","volume":"12","year":"2000"},{"abstractinfo":"研究了以氯化铵、甲醛、三氯化磷为原料一步法合成ATMP的最佳条件,活性成分达66.6%.将ATMP和复配后的ATMP蚀、阻垢性能进行比较,结果表明复配后其蚀、阻垢性能有显著提高.","authors":[{"authorName":"李红霞","id":"06e157e2-f9bb-48f2-8c54-75a7cb03b32a","originalAuthorName":"李红霞"}],"doi":"10.3969/j.issn.1002-6495.2000.04.015","fpage":"247","id":"a303d843-9b5b-4209-953e-bdcdb0c73ebb","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"c9f48733-6e85-4afd-9105-b01660d9b335","keyword":"氮基三甲叉膦酸","originalKeyword":"氮基三甲叉膦酸"},{"id":"22672e0e-826b-42c1-8df2-21111cfd7ca7","keyword":"蚀率","originalKeyword":"缓蚀率"},{"id":"d350647b-dbfa-4589-8117-4447610d000f","keyword":"阻垢率","originalKeyword":"阻垢率"}],"language":"zh","publisherId":"fskxyfhjs200004015","title":"ATMP蚀阻垢性能","volume":"12","year":"2000"},{"abstractinfo":"采用失重法、电化学方法研究了5种氨基酸在酸化介质中对A3钢片的蚀性能及蚀机理。结果表明,在30℃时,五种氨基酸对A3钢的蚀效率均随盐酸浓度的增加而减小。半胱氨酸对2%的盐酸中A3钢的蚀效率随温度的升高而增大,其余氨基酸的蚀效率均随温度的升高而下降;半胱氨酸对A3钢的蚀效率随加量的增加而下降,而其余四种氨基酸的蚀效率均随加量的增加而升高;在2%的盐酸中,氨基酸加量为200mg/L时,五种氨基酸对A3钢片的蚀效率依次为半胱氨酸〉酪氨酸〉组氨酸〉精氨酸〉亮氨酸;通过正交试验确定了半胱氨酸对A3钢在盐酸中的最佳蚀条件。蚀机理探讨表明,五种氨基酸均为阴极抑制型缓蚀剂;亮氨酸和酪氨酸在A3钢片表面的吸附基本服从Frumkin等温线,而半胱氨酸、精氨酸和组氨酸的吸附不服从该等温线。","authors":[{"authorName":"陈武","id":"132d0975-094a-4deb-b6c9-bc088f3f2642","originalAuthorName":"陈武"},{"authorName":"郝敬丽","id":"2a430d28-2f28-47ed-9f0d-da166d887796","originalAuthorName":"郝敬丽"},{"authorName":"王大勇","id":"2a93c376-ad01-4f0a-8789-2fc83baefd2f","originalAuthorName":"王大勇"},{"authorName":"梅平","id":"c7c1978b-3cfc-4fb2-8535-2cd2b4f8ba1a","originalAuthorName":"梅平"},{"authorName":"赖璐","id":"f9687758-f116-455c-9c5e-0d56a66ebe0f","originalAuthorName":"赖璐"}],"doi":"","fpage":"390","id":"a93b4563-6167-439f-affa-c03f4bb1a6d7","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"48303d94-04d2-4a07-98e2-38ab9b1055b8","keyword":"氨基酸","originalKeyword":"氨基酸"},{"id":"d4662088-374f-4c65-a001-b3ce4f946093","keyword":"蚀效率","originalKeyword":"缓蚀效率"},{"id":"319e8e41-7b88-4524-a5f6-5f2902638af8","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"},{"id":"15f62f34-2255-42ef-a9b0-ec5a2bed3ddb","keyword":"酸化介质","originalKeyword":"酸化介质"}],"language":"zh","publisherId":"fsyfh201205009","title":"酸化介质中几种氨基酸的蚀性能及蚀机理","volume":"33","year":"2012"},{"abstractinfo":"分子自组装技术在表面工程、纳米技术、膜技术和生命科学领域已有很广泛的应用,对未来材料发展起到很重要的作用,已成为近年来科研工作者关注的重点之一.钢铁作为广泛应用的工程材料,因其容易被腐蚀的特点,蚀膜的研究关系重大.钢铁表面自组装分子膜不仅具有分子取向性好、排列紧密有序、热力学稳定、用量少、成本低等优点,而且蚀效果十分优良.因此,钢铁表面自组装蚀膜技术目前引起了众多学者的关注.本文综述了钢铁表面自组装蚀膜的主要体系、影响因素及其表征技术三个方面的最新研究进展,并对自组装膜的发展方向进行了展望.","authors":[{"authorName":"王海人","id":"b6a655d8-6b30-4689-ac53-1941152ecbf0","originalAuthorName":"王海人"},{"authorName":"陈凤","id":"2d7354ff-1c39-4efd-8b61-29aeca04118b","originalAuthorName":"陈凤"},{"authorName":"屈钧娥","id":"6fc16910-ddc6-42c9-9d33-835829cf5cd6","originalAuthorName":"屈钧娥"},{"authorName":"江燕","id":"34a16a2f-c946-4e10-87cc-e495fdbbf8a8","originalAuthorName":"江燕"},{"authorName":"郭兴蓬","id":"f0d92d78-2b27-4079-8aa7-f61862dca35e","originalAuthorName":"郭兴蓬"}],"doi":"","fpage":"95","id":"9a59f3a3-a558-4fce-93a6-2ade4f97f122","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"20d92ee8-796c-4600-bc9c-0b24a1fa9474","keyword":"钢铁","originalKeyword":"钢铁"},{"id":"03100e1c-b660-4c99-b8a8-8842c57825b3","keyword":"自组装蚀膜","originalKeyword":"自组装缓蚀膜"},{"id":"e4921741-8b08-4d9b-865c-c9dfbbec7c53","keyword":"蚀效率","originalKeyword":"缓蚀效率"},{"id":"c25628f8-dad1-4503-b6f1-f70da71aa79e","keyword":"表征技术","originalKeyword":"表征技术"}],"language":"zh","publisherId":"clgc201212018","title":"钢铁表面自组装蚀膜","volume":"","year":"2012"},{"abstractinfo":"<正> 含氧羧酸、羧酸盐及其衍生物,不仅具有优良的蚀能力,而且符合环境保护的要求,与其他缓蚀剂(或助剂)复配以后,对黑色和有色金属同时具有良好的蚀效果。探讨脂肪酸盐的蚀作用规律及机理是有实际意义的。","authors":[{"authorName":"周德瑞","id":"284a6c70-8d84-4165-9092-fee4abeb9577","originalAuthorName":"周德瑞"},{"authorName":"李学刚","id":"f4f6e3d1-3820-4447-aded-b08129930995","originalAuthorName":"李学刚"},{"authorName":"姜兆华","id":"5c0fa312-0c44-4a1c-8771-622301c42bb2","originalAuthorName":"姜兆华"},{"authorName":"邵光杰","id":"e0e0aa7f-6524-4e92-b688-d257afbf2796","originalAuthorName":"邵光杰"},{"authorName":"利建强","id":"e4507ff1-4ff6-4724-8b38-0209b2ba1fbd","originalAuthorName":"利建强"}],"categoryName":"|","doi":"","fpage":"175","id":"08eb0294-36f0-42a3-b8f1-4c132c7b33f5","issue":"2","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1991_2_1","title":"脂肪酸盐的蚀作用规律及蚀机理","volume":"11","year":"1991"},{"abstractinfo":"采用失重法、电化学法研究了在硫酸介质中,氨基酸类复合缓蚀剂对碳钢的蚀性能及蚀机理,动电位极化曲线测试证明,氨基酸复合酸洗蚀荆是抑制阳极和阴极反应的混合型缓蚀剂;交流阻抗测试了Nyquist图、Bode图及phase angle图,通过分析阻抗R1、双电层电容Cd1、阻抗模值| Z |和相角的大小,证明三元氨基酸类复合缓蚀剂各组分有很好的协同效应,蚀率很高.通过失重法确定,在酸洗时间0~16 h,酸洗温度30~50℃,硫酸浓度0.4~2.0 mol/L范围内,该三元复合缓蚀剂的蚀率都在90%以上.","authors":[{"authorName":"柳鑫华","id":"6cf23cfa-db2e-4a46-abc7-d421116bf7a6","originalAuthorName":"柳鑫华"},{"authorName":"杜娇","id":"79462e6c-701d-4403-a14d-52c27d3b3224","originalAuthorName":"杜娇"},{"authorName":"王庆辉","id":"60e2ed35-18d6-49b6-ad2d-977beb5d2654","originalAuthorName":"王庆辉"},{"authorName":"孙彩云","id":"b1aeea7d-0934-4a22-9862-216309534c5e","originalAuthorName":"孙彩云"}],"doi":"10.3969/j.issn.1001-3660.2010.06.016","fpage":"51","id":"9db61016-4d83-4fa8-aa6d-463f9accb0fa","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"426d911c-7304-4646-aaab-547b887485b9","keyword":"硫酸","originalKeyword":"硫酸"},{"id":"eb13924d-985a-4ac9-8f9a-a55136355587","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"ee4b60f4-c039-4476-8905-486398950877","keyword":"氨基酸类缓蚀剂","originalKeyword":"氨基酸类缓蚀剂"},{"id":"11ff6bf3-f557-45ef-b5cb-44ac62de2fe0","keyword":"蚀机理","originalKeyword":"缓蚀机理"},{"id":"2adb64c2-7b15-4ccc-aa12-956de8c81761","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"bmjs201006016","title":"氨基酸类酸洗缓蚀剂蚀机理及其蚀性能的影响因素研究","volume":"39","year":"2010"},{"abstractinfo":"    采用失重法、动电位扫描法、电化学交流阻抗法和SEM分析,研究了咪唑啉类缓蚀剂ZZF的蚀性能.结果表明:在50℃的5%HCl溶液中,4 mmol/L ZZF缓蚀剂能有效地提高碳钢的耐蚀性能;ZZF的蚀作用机理系几何覆盖效应,它在金属表面吸附成膜后,使阴极和阳极过程都受到了阻滞;ZZF试样膜质均匀、致密,厚度为6μm;根据EIS提出了相应的特征等效电路.\n ","authors":[{"authorName":"刘建平","id":"2c30bd29-71df-42b7-b847-76f536ad8e67","originalAuthorName":"刘建平"},{"authorName":"杨新丽","id":"5642ae2e-7be0-43a7-9708-4449ce8ded28","originalAuthorName":"杨新丽"},{"authorName":"周晓湘","id":"0ace59a8-24d8-472b-92fb-9f6b2c9e3618","originalAuthorName":"周晓湘"}],"categoryName":"|","doi":"","fpage":"101","id":"cb3b7987-b080-4466-8c90-53ce261ba20d","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"1d7d73dc-9c7a-4448-b75d-9c58f874c98c","keyword":"蚀效率","originalKeyword":"缓蚀效率"},{"id":"59fb14e8-d069-42ed-b982-d78817bda7d0","keyword":" polarization curve","originalKeyword":" polarization curve"},{"id":"d8696627-f31f-4c99-b24f-94b1ca2e17ed","keyword":" EIS","originalKeyword":" EIS"},{"id":"2d1cd0d2-81ce-46ba-8041-3fc301f28dba","keyword":" equivalent circuit","originalKeyword":" equivalent circuit"}],"language":"zh","publisherId":"1002-6495_2010_2_6","title":"酸洗缓蚀剂ZZF蚀性能研究","volume":"22","year":"2010"},{"abstractinfo":"采用失重法、动电位扫描法、电化学交流阻抗法和SEM分析,研究了咪唑啉类缓蚀剂ZZF的蚀性能.结果表明:在50℃的5%HCl溶液中,4 mmol/L ZZF缓蚀剂能有效地提高碳钢的耐蚀性能;ZZF的蚀作用机理系几何覆盖效应,它在金属表面吸附成膜后,使阴极和阳极过程都受到了阻滞;ZZF试样膜质均匀、致密,厚度为6μm;根据EIS提出了相应的特征等效电路.","authors":[{"authorName":"刘建平","id":"8951488b-0b37-4993-8e40-c2e2a825c181","originalAuthorName":"刘建平"},{"authorName":"杨新丽","id":"437870f8-b1ae-4509-8279-7cebaef60a41","originalAuthorName":"杨新丽"},{"authorName":"周晓湘","id":"c2eb269e-10de-4f43-9893-c7d2f034f541","originalAuthorName":"周晓湘"}],"doi":"","fpage":"101","id":"1b649a37-340d-4a42-99ba-f2b4455a785e","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"c148849e-0bd2-4230-b227-b7bce8019536","keyword":"蚀效率","originalKeyword":"缓蚀效率"},{"id":"e4c2e5a0-fd41-4339-8a6f-6778eb45573d","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"ef85ed3f-ced8-4860-85c3-18534e82b0ec","keyword":"交流阻抗","originalKeyword":"交流阻抗"},{"id":"cd82236a-6736-492d-b1fc-6c764b519420","keyword":"等效电路","originalKeyword":"等效电路"}],"language":"zh","publisherId":"fskxyfhjs201002006","title":"酸洗缓蚀剂ZZF蚀性能研究","volume":"21","year":"2010"}],"totalpage":195,"totalrecord":1943}