{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过炭纤维电化学表面改性及动态固着代替静态固着,发现好氧池中处理后的聚丙烯腈(PAN)基炭纤维固着能力更好.对改性后炭纤维的表面形貌、表面官能团的种类和含氧官能团的含氧量进行了表征,并根据动、静态固着效果,分析了影响活性污泥固着的关键因素.SEM表面形貌观察表明经过电化学刻蚀后,炭纤维表面粗糙度的增加有利于形成活性污泥的固着.XPS分析显示,电化学表面改性后,C-C键、羧基、羰基等官能团影响活性污泥的表面固着效果,其中羧基的影响最为显著,另外,表面化学吸附氧对活性污泥固着有促进作用.","authors":[{"authorName":"刘存平","id":"98aa2e73-19a5-407d-aaec-ebb720e78004","originalAuthorName":"刘存平"},{"authorName":"戴光泽","id":"10f62df7-a2a3-4b87-8228-4726ffb0e8ef","originalAuthorName":"戴光泽"},{"authorName":"岑贞章","id":"c8170b59-1658-4443-a289-8aff28cb28e2","originalAuthorName":"岑贞章"},{"authorName":"董立新","id":"5006253f-7935-4909-85cb-3b715db63766","originalAuthorName":"董立新"},{"authorName":"刘力菱","id":"ae532fb0-4fbf-497b-9f08-ce3654c1d0aa","originalAuthorName":"刘力菱"},{"authorName":"崔海宝","id":"14f02088-cd37-485e-b1e8-e4a998b7c967","originalAuthorName":"崔海宝"}],"doi":"10.3969/j.issn.1003-1545.2007.05.009","fpage":"32","id":"48d14718-7323-4594-9b5b-eb3eed02ed8e","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"30834d5a-7f0d-4f53-8caf-80f92e27ed46","keyword":"炭纤维","originalKeyword":"炭纤维"},{"id":"3e9d6bc7-7670-4b89-a4bb-80b0d11ee0f5","keyword":"电化学表面改性","originalKeyword":"电化学表面改性"},{"id":"de1b37c9-91a4-4a54-b2a0-21de2372a9b5","keyword":"活性污泥固着","originalKeyword":"活性污泥固着"},{"id":"8d780d2b-a205-4322-ad28-1355c34d5ec7","keyword":"表面官能团","originalKeyword":"表面官能团"},{"id":"ad39fb87-bd5a-4c9f-bbe8-a99414fdd23a","keyword":"污水处理","originalKeyword":"污水处理"}],"language":"zh","publisherId":"clkfyyy200705009","title":"炭纤维阳极氧化对活性污泥固着性能的影响","volume":"22","year":"2007"},{"abstractinfo":"分别在硼酸缓冲溶液(pH=8.4)和0.1mol/LH28O4溶液中对镍基合金600和800进行电化学表面改性;对镍基合金表面氧化膜(改性前和改性后)进行动电位扫描、Mott-Schottky曲线测定以及利用光电流法绘制光电流谱。结果表明,镍基合金在酸性溶液中平带电位发生明显正移,载流子浓度升高,且在同样的电位范围呈现不同的半导体性质;电化学表面改性后,镍基合金生成的表面钝化膜平带电位没有发生明显变化,载流子浓度明显减小,表面钝化膜溶解的速度降低,耐蚀性能得到改善。","authors":[{"authorName":"张胜寒","id":"6171a835-9058-41a4-94c2-7086eeb4bb09","originalAuthorName":"张胜寒"},{"authorName":"连佳","id":"af88b5fa-7490-481e-92a2-e736cd882742","originalAuthorName":"连佳"},{"authorName":"冯玲","id":"d977e832-5251-4e32-820b-ac06d0fd3908","originalAuthorName":"冯玲"}],"doi":"","fpage":"27","id":"aba6d91f-d4e8-42b2-9fdb-99e39f5ba191","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"3537343f-e24f-4dd3-a4fd-f2104e8c4222","keyword":"镍基合金","originalKeyword":"镍基合金"},{"id":"030c4417-6ec9-4c90-88af-3f0cbc81e29f","keyword":"氧化膜","originalKeyword":"氧化膜"},{"id":"f6f8c320-c711-406b-b1b9-a69561c382a0","keyword":"光电流","originalKeyword":"光电流"},{"id":"f3d7a5eb-16b1-486f-8261-45f1ac58bf08","keyword":"电化学改性","originalKeyword":"电化学改性"}],"language":"zh","publisherId":"fsyfh201201009","title":"镍基合金表面电化学表面改性","volume":"33","year":"2012"},{"abstractinfo":"表面处理是高性能碳纤维制备的重要环节之一. 采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)等表征方法, 研究了改性聚丙烯腈(PAN)基碳纤维的表面状态, 探讨了电化学氧化法对碳纤维表面的改性机理. 研究结果表明, 在电化学的化学刻蚀作用下, 碳纤维表面薄弱外层被去除, 表面原有沟槽加宽加深, 表面粗糙度增大了1倍多;在电化学的化学氧化作用下, 碳纤维表面的活性官能团增多, (O1s+N1s)/C1s提高了9.7%. 并提出了电化学氧化同时改善了碳纤维的表面物理状态和表面化学状态的 “物化双效”机理. ","authors":[{"authorName":"郭云霞","id":"625b07c6-c834-440d-ada7-c76a8bc19748","originalAuthorName":"郭云霞"},{"authorName":"刘杰","id":"fb326f64-5f77-439d-a1ba-30770013a695","originalAuthorName":"刘杰"},{"authorName":"梁节英","id":"040e4b5c-17d2-48fc-8795-d98500763b90","originalAuthorName":"梁节英"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00853","fpage":"853","id":"2b35acb2-f0ca-477b-bdb1-ce7b17fad8ce","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bbd0ff94-b0b3-42b6-b1fb-c3e97289229e","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"b2c7aa24-7f67-486f-a351-769f765076b5","keyword":" electrochemical oxidation","originalKeyword":" electrochemical oxidation"},{"id":"a185c7f4-2741-4105-8220-416c50b78938","keyword":" surface modification","originalKeyword":" surface modification"},{"id":"ebd9dec2-348b-4dd5-ab6d-288b60ef221e","keyword":" mechanism","originalKeyword":" mechanism"}],"language":"zh","publisherId":"1000-324X_2009_4_23","title":"电化学改性PAN基碳纤维表面及其机理探析","volume":"24","year":"2009"},{"abstractinfo":"表面处理是高性能碳纤维制备的重要环节之一.采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)等表征方法,研究了改性聚丙烯腈(PAN)基碳纤维的表面状态,探讨了电化学氧化法对碳纤维表面的改性机理.研究结果表明,在电化学的化学刻蚀作用下,碳纤维表面薄弱外层被去除,表面原有沟槽加宽加深,表面粗糙度增大了1倍多;在电化学的化学氧化作用下,碳纤维表面的活性官能团增多,(O1s+N1s)/C1s提高了9.7%.并提出了电化学氧化同时改善了碳纤维的表面物理状态和表面化学状态的\"物化双效\"机理.","authors":[{"authorName":"郭云霞","id":"f439fd50-c46e-4fec-8fea-2e2ff0ddaaa4","originalAuthorName":"郭云霞"},{"authorName":"刘杰","id":"6e951c04-9f23-4609-96f1-50e19adc1e83","originalAuthorName":"刘杰"},{"authorName":"梁节英","id":"2356b7d2-98fd-469e-87ff-9b1ee2662e5b","originalAuthorName":"梁节英"}],"doi":"10.3724/SP.J.1077.2009.00853","fpage":"853","id":"9f101c3b-997d-4da2-9fa4-71bfbfc63546","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"13a355d4-a463-4651-8687-2fe89bbfb889","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"867d8ebc-1c66-44f7-9eec-3caf5a8e9d95","keyword":"电化学氧化","originalKeyword":"电化学氧化"},{"id":"59f56d79-8b88-4f84-b03d-9e4ba6896da3","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"575d2c85-35a8-46ce-8211-776474836c58","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"wjclxb200904043","title":"电化学改性PAN基碳纤维表面及其机理探析","volume":"24","year":"2009"},{"abstractinfo":"将ZnO浸泡在镁和钙的醋酸盐溶液中,通过蒸发、高温等处理得到了表面改性的ZnO样品.采用XRD、SEM对其结构和形貌进行了表征,同时用恒电流充放电等技术研究了其充放电特性和循环稳定性.实验结果表明:通过对氧化锌进行表面改性处理,改进了其电化学性能,并提高了其电化学循环稳定性.","authors":[{"authorName":"陈华","id":"b0bdfcac-d0c6-44b1-8f85-c38abe4b7200","originalAuthorName":"陈华"},{"authorName":"王建明","id":"dbf7264a-8535-4041-b1c8-bedf47e9fb30","originalAuthorName":"王建明"},{"authorName":"郑奕","id":"e383ee9e-196b-40a6-a021-e6cfd99bd91a","originalAuthorName":"郑奕"},{"authorName":"张鉴清","id":"e45b1083-e369-4f9f-b1f7-0b875a635201","originalAuthorName":"张鉴清"},{"authorName":"曹楚南","id":"0b18c928-e370-4181-b7e0-2a62358bc67c","originalAuthorName":"曹楚南"}],"doi":"10.3969/j.issn.1673-2812.2004.02.025","fpage":"259","id":"876ae7ec-d093-4061-82ee-ad68e8e2815e","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e96204b1-753c-4b12-8965-f8cbdb846266","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"0ec837e5-1be8-4b4d-927b-3dd78f42d937","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"774a8b33-c0a7-4b06-86c6-ad72ae4f036f","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clkxygc200402025","title":"表面改性处理对ZnO电化学性能的影响","volume":"22","year":"2004"},{"abstractinfo":"采用电化学氧化法对聚丙烯腈(PAN)基碳纤维进行表面改性,利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)和X射线衍射(XRD)对改性后的碳纤维表面状态进行了研究.同时探讨了碳纤维表面状态与其抗拉强度及其复合材料力学性能的关联.研究结果表明,碳纤维经电化学氧化后,表面的粗糙度提高了1.1倍;表面碳含量降低了9.7%,氧含量提高了53.8%,氮含量增加了7.5倍,羟基和羰基含量也有不同程度的提高;表面取向指数减小了1.5%,表面微晶尺寸减小,表面活性碳原子数增加了78%.电化学氧化法的刻蚀作用致使碳纤维拉伸强度降低了8.1%,但同时也改善了碳纤维表面的物理性质和化学性质,提高了碳纤维与树脂问的粘结性,使复合材料的ILSS提高26%.","authors":[{"authorName":"郭云霞","id":"aaa3d5fe-ffa9-4164-81b9-817526752ee1","originalAuthorName":"郭云霞"},{"authorName":"刘杰","id":"72f70e74-b4df-4fad-ade4-33b5e863e8e0","originalAuthorName":"刘杰"},{"authorName":"梁节英","id":"b7ee6f5e-e944-477e-93f1-1c16507b7b6e","originalAuthorName":"梁节英"}],"doi":"10.3321/j.issn:1000-3851.2005.03.010","fpage":"49","id":"ecc82026-5383-4967-b2ce-8774c1b47a05","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"09406115-4597-4c0a-a0ff-bcece02dcb3c","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"4dd27da4-c5e7-4425-8535-c19225f6c13e","keyword":"改性","originalKeyword":"改性"},{"id":"5b75060d-ce9d-4c0e-a854-beb4c7149028","keyword":"电化学氧化","originalKeyword":"电化学氧化"},{"id":"7416f2b6-56ee-4de9-8b8a-6a3f1fb34c28","keyword":"表面状态","originalKeyword":"表面状态"}],"language":"zh","publisherId":"fhclxb200503010","title":"电化学改性对PAN基碳纤维表面状态的影响","volume":"22","year":"2005"},{"abstractinfo":"通过磷酸-二氧化碳活化法将毛竹废料制备成活性炭,再以HNO3、HCl、H2 SO4为改性剂,对自制活性炭进行表面改性,并在CO2气氛中进行二次扩孔,制成以KOH为电解液的双电层电容器炭电极.采用低温N2吸附法和X射线光电子能谱仪对样品孔结构和表面性质进行表征,结果表明:经酸改性处理后的活性炭样品孔径分布总体差异不大,但比表面积和总孔容下降,活性炭表面性质发生较大变化.采用恒流充放电、循环伏安法和交流阻抗法考察了活性炭电极的电化学性能.结果表明,改性后活性炭电极比电容增大,其中以硝酸改性效果为最佳.酸改性后内阻均有所下降,说明改性后的活性炭亲水性提高,从而降低离子扩散阻力.","authors":[{"authorName":"叶晓丹","id":"2cb53790-a57a-441a-a671-695c50068f2f","originalAuthorName":"叶晓丹"},{"authorName":"潘雁红","id":"b18fe01b-1beb-4896-9f06-d269a9edcf67","originalAuthorName":"潘雁红"},{"authorName":"黄宛真","id":"83d6687b-16c5-45af-9354-e7c983403412","originalAuthorName":"黄宛真"},{"authorName":"钟哲科","id":"8977aac9-7cd8-439b-a739-bac482310dd6","originalAuthorName":"钟哲科"},{"authorName":"杨慧敏","id":"be756035-8d9a-47f2-be04-504d44f1cdac","originalAuthorName":"杨慧敏"},{"authorName":"于辉","id":"f7223a53-ac03-49ba-8c63-5b23d493046a","originalAuthorName":"于辉"}],"doi":"10.11896/j.issn.1005-023X.2014.22.011","fpage":"44","id":"018dfd46-4e91-44dc-8d49-d3eab1a80911","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b6770e0e-f9d5-40cf-8466-6b2e69e660e3","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"953f26c1-1c54-47c1-92d6-5552162fa66a","keyword":"改性","originalKeyword":"改性"},{"id":"6489e1dd-e9dd-4b5d-862e-3a611329dbb0","keyword":"电化学","originalKeyword":"电化学"}],"language":"zh","publisherId":"cldb201422011","title":"竹基活性炭表面改性及电化学性能研究","volume":"28","year":"2014"},{"abstractinfo":"对比研究(NH4)2HPO4和NH4H2PO4两种不同电解质对碳纤维电化学改性效果的影响.通过拉丁方试验,研究了各改性参数对纤维表面改性效果的影响程度,采用XPS、AFM、BET技术对纤维表面化学组成、形貌及其比表面积的变化进行了表征分析.结果表明:以(NH4)2HPO4为电解质处理时改性效果主要受相对电流密度的影响,而以NH4H2PO4为电解质时电解液浓度是最主要的影响因素;在(NH4)2HPO4电解液中,纤维表面氧化刻蚀温和,改性效果显著,层间剪切强度可提高到79.8 MPa,而在NH4H2PO4电解液中,纤维表面受到较强烈氧化刻蚀,本体强度损失较大,复合材料层间剪切强度仅能提高到70.8 MPa.","authors":[{"authorName":"曹海琳","id":"2ed20c6f-5df2-496d-94d7-51409aad653a","originalAuthorName":"曹海琳"},{"authorName":"黄玉东","id":"f702f2a8-ccfe-4dfe-94dc-04c4f2d8bf97","originalAuthorName":"黄玉东"},{"authorName":"张志谦","id":"04a1a542-2728-42aa-bb18-b006165fd813","originalAuthorName":"张志谦"},{"authorName":"孙举涛","id":"c68f2279-7450-4d76-a7ac-fe34123194e5","originalAuthorName":"孙举涛"}],"doi":"10.3321/j.issn:1000-3851.2004.03.006","fpage":"28","id":"38e39adc-6756-4a29-ace5-47bda29f08f8","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"d3122f47-49c2-4f2c-97a6-d5761db0b6af","keyword":"(NH4)2HPO4","originalKeyword":"(NH4)2HPO4"},{"id":"c6adb9aa-7ed7-4776-9c9c-afc0af5d4239","keyword":"NH4H2PO4","originalKeyword":"NH4H2PO4"},{"id":"68ce1886-23ff-4dec-a75d-00b9c3a6f3e2","keyword":"电化学改性","originalKeyword":"电化学改性"},{"id":"176ed868-775a-4f72-b898-4ddefa2fcf74","keyword":"碳纤维","originalKeyword":"碳纤维"}],"language":"zh","publisherId":"fhclxb200403006","title":"磷酸盐溶液中碳纤维表面电化学改性","volume":"21","year":"2004"},{"abstractinfo":"以H3PO4溶液为电解液对碳纤维进行电化学改性处理,通过循环伏安测试,XPS、SEM和XRD分析探讨了H3PO4溶液体系中碳纤维表面电化学改性机理.结果表明:在改性处理初期,纤维表面已有电活性物质发生电化学反应产生新的活性碳原子,此后伴随着水的电解析氧反应纤维表面进一步受到氧化和刻蚀,表面氧元素含量增加,而且各种含氧官能团含量随着改性处理得进行不断变化,其中羧基和酸酐含量明显增加.纤维表面粗糙度增加,沟槽加深加宽,但其本体结构并没有改变,只是表面层微晶尺寸有所减小,晶面间距有所增大.","authors":[{"authorName":"曹海琳","id":"517f8ee3-f2b3-444a-99b5-c52d7cd4e4ee","originalAuthorName":"曹海琳"},{"authorName":"黄玉东","id":"61afc8cb-5b96-4034-9102-b457fb97d4da","originalAuthorName":"黄玉东"},{"authorName":"张志谦","id":"630d920e-8d56-4289-aeea-f8b37fcebd70","originalAuthorName":"张志谦"}],"doi":"10.3969/j.issn.1005-5053.2004.03.007","fpage":"32","id":"91c5c72b-1dbb-40e2-b7c4-d8e997451233","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"00eb8491-6d18-481a-9a94-49da3e7a8b5f","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"1fa9115d-b400-41eb-9b38-f677a01c7913","keyword":"电化学改性","originalKeyword":"电化学改性"},{"id":"e273af73-5c5d-417c-a84f-8c160cb73eca","keyword":"H3PO4","originalKeyword":"H3PO4"},{"id":"c80501e9-9adb-4336-89ea-6b5fc72195e7","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"hkclxb200403007","title":"H3 PO4溶液中碳纤维表面电化学改性机理研究","volume":"24","year":"2004"},{"abstractinfo":"通过氢气还原改性和浓硝酸氧化处理对石油焦基活性炭(ACs)进行改性.采用氮气吸附和脱附等温线计算改性ACs的BET比表面积、 DFT孔径分布及孔容,以XPS方法表征改性ACs的表面含氧官能团种类及含量,改性ACs的电化学性能通过直流循环充放电、循环伏安等表征.结果表明:浓硝酸处理后,ACs比表面积和孔容均稍有减少,表面含氧官能团和比电容明显增加,内阻和自放电显著增大;氢气改性后,ACs比表面积和孔容亦稍有减少,孔径分布的变化使比电容明显增加,氧化官能团的减少降低了内阻并减少了自放电.即,氢气改性ACs的电化学性能明显提高,增加了比电容,降低了内阻和自放电.","authors":[{"authorName":"谢应波","id":"97d254cc-4f5e-4348-80fe-38cb673a98cc","originalAuthorName":"谢应波"},{"authorName":"乔文明","id":"ac8d1030-0d1f-4c0f-800d-d09bb6d1bd33","originalAuthorName":"乔文明"},{"authorName":"张维燕","id":"0b91bdb1-224a-4730-9b83-ca2a1a5632c9","originalAuthorName":"张维燕"},{"authorName":"孙刚伟","id":"135ec760-ab66-4eee-8488-9642841994f5","originalAuthorName":"孙刚伟"},{"authorName":"凌立成","id":"37d0390f-da43-4503-a470-23d4998cc735","originalAuthorName":"凌立成"}],"doi":"10.1016/S1872-5805(09)60031-7","fpage":"248","id":"3387672d-6cd8-4947-9e82-eab8c063a12d","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"3e963fd9-8a07-4247-b31d-0e014c27a135","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"eb56ac7e-a668-447d-812b-3c82e4049516","keyword":"双电层电容器","originalKeyword":"双电层电容器"},{"id":"dab8d621-ab73-469a-9ccc-469f0e0942c2","keyword":"表面官能团","originalKeyword":"表面官能团"},{"id":"c66519e4-4a7d-47e8-a021-4f8b89d6b4da","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xxtcl201004002","title":"活性炭表面改性对双电层电容器电化学性能的影响","volume":"25","year":"2010"}],"totalpage":6868,"totalrecord":68679}