{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用溶胶凝胶法制备Si/TiO2复合材料具有操作简单、包覆层致密均匀、电化学性能稳定等优点,成为目前最常用Si/TiO2的制备方法之一.本文综述了Si/TiO2复合结构对电化学性能的影响,论述了溶胶凝胶制备过程中影响该复合材料电化学性能的影响因素.为进一步提高Si/TiO2复合材料的电化学性能的研究提供了理论依据和建议.","authors":[{"authorName":"张瑛洁","id":"e00affc0-194d-4370-9009-c61b7e705f3b","originalAuthorName":"张瑛洁"},{"authorName":"赵丽文","id":"2dce22b8-c2e9-43cf-b00c-09de081d157c","originalAuthorName":"赵丽文"},{"authorName":"楚华","id":"1b49f2a9-df04-4baf-880d-390632213963","originalAuthorName":"楚华"},{"authorName":"袁龙飞","id":"6e9b8dde-3b7a-4963-b72b-7e3d3adc67a2","originalAuthorName":"袁龙飞"}],"doi":"","fpage":"2454","id":"18a5abf4-c431-40f8-92d5-df44fb5ce46a","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f24d4095-fee0-47e8-b0da-8c7ab2a9dfad","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"11cba7aa-25b4-4a85-9cff-c3b8678e305c","keyword":"Si/TiO2复合负极材料","originalKeyword":"Si/TiO2复合负极材料"},{"id":"206e38cf-32cb-40bd-9a57-5090f87c5244","keyword":"复合结构","originalKeyword":"复合结构"},{"id":"a387bc64-c96b-41a5-aff8-0fbedf062277","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"gsytb201608021","title":"溶胶凝胶法制备Si/TiO2复合锂离子电池负极材料的研究进展","volume":"35","year":"2016"},{"abstractinfo":"由于钠离子半径比锂离子半径大70%,使得钠离子在石墨电极材料中脱嵌较困难,需要对石墨负极材料进行改性.以天然石墨为原料,采用Hummers法制备氧化石墨烯;在此基础上以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO2前驱体/氧化石墨烯(TiO2/GO)复合材料,通过热处理获得锐钛矿型TiO2/还原氧化石墨烯(TiO2/RGO)复合材料.电化学测试结果表明:TiO2含量为15wt%的TiO2/RGO复合材料在电流密度为20 mA· g-1下的首次放电比容量为74.08 mAh·g-1,随着循环次数的增加,放电比容量逐渐增大,循环50次后达109,10mAh·g-1;充放电效率也呈现出逐渐增大的趋势,循环50次后达65.59%.而纯还原氧化石墨烯首次放电比容量为41,43 mAh·g-1,循环50次后仅为20.47 mAh·g-1.","authors":[{"authorName":"杨绍斌","id":"2f43037a-9a94-404e-95a6-1e6e06b81748","originalAuthorName":"杨绍斌"},{"authorName":"张琴","id":"b52c566c-3ce8-4ff2-b5d3-32a00756f92b","originalAuthorName":"张琴"},{"authorName":"沈丁","id":"f53df108-7279-4fd2-9699-887ee4754ee4","originalAuthorName":"沈丁"},{"authorName":"董伟","id":"5f3b485e-eb6f-4046-a6d3-e050930775ad","originalAuthorName":"董伟"},{"authorName":"李思南","id":"d2833aba-ac37-44d9-bb86-597ef1b446d1","originalAuthorName":"李思南"},{"authorName":"王晓亮","id":"6483c7ea-1c7b-4e76-bfbe-8dea246ed27b","originalAuthorName":"王晓亮"}],"doi":"10.13801/j.cnki.fhclxb.20160219.004","fpage":"2905","id":"d8ca3ff9-38c6-4e89-920c-2912bc029c19","issue":"12","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8f78c014-e6ae-43ab-a9be-bbcfecc9c3f2","keyword":"钠离子电池","originalKeyword":"钠离子电池"},{"id":"962e22ae-1708-4bdb-bb69-91e0f6594303","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"fd2fdd5a-5f68-40db-b277-9066f45fd717","keyword":"还原氧化石墨烯","originalKeyword":"还原氧化石墨烯"},{"id":"570a8fb3-a2b9-4bb2-8b18-4655bcf5b5b5","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"b264f78a-8324-4203-b2ba-bf8404d4d99e","keyword":"电性能","originalKeyword":"电性能"}],"language":"zh","publisherId":"fhclxb201612027","title":"钠离子电池TiO2/还原氧化石墨烯负极材料的制备及储钠性能","volume":"33","year":"2016"},{"abstractinfo":"以纳米二氧化钛为抑菌剂,使用表面改性剂改善纳米二氧化钛与SEBS的相容性,制备出具有特殊用途的SEBS/TiO2纳米复合材料,并考察了TiO2添加量对复合材料力学性能的影响.采用SEM表征纳米二氧化钛在SEBS中的分散性能;采用黄色指数间接评价材料的抑菌性能.研究表明:随TiO2表面改性剂用量的增加,SEBS/TiO2纳米复合材料的拉伸强度、伸长率、抑菌性能呈先增加后减少趋势;随TiO2含量的增加,SEBS/TiO2纳米复合材料的拉伸强度、伸长率、黄色指数均不同程度增加.表面改性剂和纳米TiO2用量均为4%时,SEBS/TiO2纳米复合材料的黄色指数最高能达到27,即材料的抑菌性能最佳,此时也可以达到很好的力学性能.","authors":[{"authorName":"石瑞成","id":"66b3c399-b957-451e-a5e7-dd05e9db39f6","originalAuthorName":"石瑞成"}],"doi":"","fpage":"12","id":"74a7bc6c-ce80-408f-838a-2f78a3fa6513","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"505bc3b0-e015-4319-9c5b-0a10a0c2a183","keyword":"SEBS","originalKeyword":"SEBS"},{"id":"73f6fb08-6dc8-4c93-ac1e-80b3cdf30ee4","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"2c1766b2-85fd-4ab3-9b21-a759ed04e8fe","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1b1eddda-f5cb-4465-84f5-81ea551d6101","keyword":"表面改性剂","originalKeyword":"表面改性剂"},{"id":"6f6aaa89-1d6c-46ab-a9ac-5d97e62e11fd","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"bd344a78-19c8-4bd0-aae1-4c389893d9db","keyword":"黄色指数","originalKeyword":"黄色指数"}],"language":"zh","publisherId":"gtft200902003","title":"纳米TiO2含量对SEBS/TiO2复合材料性能的影响","volume":"30","year":"2009"},{"abstractinfo":"本文采用溶剂热法,以四乙醇钛为主要原材料制备TiO2.结合X-射线衍射和扫描电镜等材料结构测试分析方法和恒电流充放电电化学测试技术,研究了添加表面活性剂聚乙烯吡咯烷酮(PVP)、溶剂热反应温度和高电导性气相生长碳纤维(VGCF)的添加对TiO2结构和电化学性能的影响.研究结果表明,本方法成功制备了纳米尺寸的锐钛矿TiO2,PVP的添加能改善TiO2颗粒的分散性.较低溶剂热反应温度下合成的TiO2颗粒尺寸较细,但团聚程度大,而较高的溶剂热反应温度使TiO2的颗粒尺寸长大,但团聚程度改善.通过添加表面活性剂、控制溶剂热温度和引入VGCF,本文获得的TiO2/C复合材料作为锂离子电池负极材料在1C、5C、10C和20C的放电倍率下容量分别可达220、180、150和120mAh/g,具有良好的倍率性能.","authors":[{"authorName":"牛令辉","id":"ad9edca4-b593-4e94-b70c-a4cb325cd8ad","originalAuthorName":"牛令辉"},{"authorName":"高明霞","id":"53fd065a-2078-4248-8c81-dd0446bad811","originalAuthorName":"高明霞"},{"authorName":"刘永锋","id":"5e3062db-9bea-4cf9-b817-82c394d98659","originalAuthorName":"刘永锋"},{"authorName":"潘洪革","id":"e6fa9514-bd96-44da-b304-497e058bf0c7","originalAuthorName":"潘洪革"}],"doi":"","fpage":"853","id":"1b0bf3ff-e043-43d4-a442-818d8abe9769","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d8c84d19-80ce-4953-91b3-0948848c00ef","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"8c809013-b664-474e-afc9-2c30ce7d0355","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"2318b934-9291-4f47-8fa3-9e0c0c101389","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"bf063556-0bbe-4bc2-ba43-f1aab0396245","keyword":"溶剂热法","originalKeyword":"溶剂热法"},{"id":"8ce15e56-8f80-4917-95cd-6c3186046902","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clkxygc201406014","title":"纳米TiO2锂离子电池负极材料的溶剂热法制备及其电化学性能","volume":"32","year":"2014"},{"abstractinfo":"以Ni3[Si2O5][OH]2纳米管(NNTs)为载体,利用氟钛酸氨((NH4)2TiF6)与硼酸(H3BO3)混合液相沉积法制备TiO2/NNTs复合纳米管.通过TEM、Raman和UV-Vis等手段对样品的形貌、物相和光吸收性能进行了分析表征,探讨了沉积温度对复合效果的影响.以TiO2/NNTs复合纳米管作为催化剂对水体中盐酸四环素进行降解研究,探究了沉积温度、水体环境(pH值条件)对催化效果的影响.并通过质谱对催化降解产物进行了初步的推断.结果表明,NNTs表面被TiO2均匀包覆,包覆的TiO2为锐钛矿相.制备的TiO2/NNTs在紫外和可见光区有较强吸收,相对TiO2光吸收范围红移.当溶液pH值为6.5时降解率最佳;降解产物为小分子物质.","authors":[{"authorName":"孙蕾","id":"00e60543-e370-4f0b-97e9-57e28f3c3021","originalAuthorName":"孙蕾"},{"authorName":"马国华","id":"50841279-6acb-4a95-8c62-b5bc2d58a528","originalAuthorName":"马国华"}],"doi":"10.3969/j.issn.1001-9731.2017.03.025","fpage":"133","id":"5fbef0ea-439a-453b-a336-2ffefa57f115","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b649c7d5-1b62-4d6a-babe-801a3d7ec8b9","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"57bdf4b1-e147-4c01-84b8-c806b0e19c28","keyword":"Ni3[Si2O5][OH]2纳米管","originalKeyword":"Ni3[Si2O5][OH]2纳米管"},{"id":"2bfa543a-7150-4b5d-8bad-a608116db837","keyword":"四环素","originalKeyword":"四环素"},{"id":"a8be670d-6c54-49be-af01-6d4dd310c7e8","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gncl201703025","title":"TiO2/Ni3[Si2O5][OH]2复合光催化材料对盐酸四环素的光降解研究","volume":"48","year":"2017"},{"abstractinfo":"采用熔融复合的方法制备了纳米TiO2/聚碳酸酯-聚丙烯(TiO2/PC-PP)光扩散复合材料.分别采用SEM和DSC研究了纳米TiO2/PC-PP复合材料的微观结构和等温结晶性能,并研究了复合材料的热稳定性与光学性能.结果表明:纳米TiO2的加入使得光扩散体系中分散相的平均尺寸变小,形态更加均一,并且随着复合材料中纳米TiO2质量分数的增加,复合材料的半结晶时间逐渐延长,总体结晶速率变慢.纳米TiO2的加入使复合材料的初始热降解温度以及最终残余量升高,当PP中纳米TiO2质量分数为5%时,复合材料的透光率达到80%,雾度为88%,此时纳米TiO2/PC-PP复合材料的光扩散性能较好.","authors":[{"authorName":"刘义敏","id":"534b664f-2f2c-4720-a05d-0ed567c283d0","originalAuthorName":"刘义敏"},{"authorName":"侯兴双","id":"0dc20626-9dbe-4265-9706-d5eeef47f4b9","originalAuthorName":"侯兴双"},{"authorName":"宋娜","id":"d0072531-592c-4a28-ba0a-c188fbfd8e03","originalAuthorName":"宋娜"}],"doi":"10.13801/j.cnki.fhclxb.20151209.003","fpage":"2405","id":"81dbd1e3-8d9d-4c9b-b528-2db244299d47","issue":"11","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a9b2c5f5-e192-48ee-b190-aaef3974b760","keyword":"聚碳酸酯","originalKeyword":"聚碳酸酯"},{"id":"d1bb5b79-f529-4191-846d-17c3ec3b251a","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"ff4cd364-a293-4b75-ae25-436c995e40dd","keyword":"光扩散复合材料","originalKeyword":"光扩散复合材料"},{"id":"f8eaeb85-16da-422b-bb30-f5a6291ec4ba","keyword":"等温结晶动力学","originalKeyword":"等温结晶动力学"},{"id":"291b5fe8-a435-45c3-9b26-3a95b1d73996","keyword":"透光率","originalKeyword":"透光率"},{"id":"140807db-f9c4-46fb-8f3b-061eeded29ba","keyword":"雾度","originalKeyword":"雾度"}],"language":"zh","publisherId":"fhclxb201611001","title":"纳米TiO2/PC-PP光扩散复合材料的结构与性能","volume":"33","year":"2016"},{"abstractinfo":"TiO2/膨润土复合光催化材料是近年来颇受国内外学者关注的环境功能材料之一.本文综述了TiO2/膨润土复合光催化材料的制备及其在环境污染治理方面的应用研究进展,并从膨润土和TiO2的改性方面对TiO2/膨润土复合光催化材料的研究进行了详细论述,提出了存在的问题及研究发展方向.","authors":[{"authorName":"谷锦","id":"32024e56-3910-4a14-a5a0-bee230340b12","originalAuthorName":"谷锦"},{"authorName":"张静静","id":"04056f48-0960-4bae-9238-17338a2ec8a7","originalAuthorName":"张静静"},{"authorName":"陈鹏","id":"b0f82fa8-8c86-499d-b1a0-8cf190615c91","originalAuthorName":"陈鹏"},{"authorName":"陈勇","id":"a9d9e1b9-c270-42db-8f7f-c711a374a23b","originalAuthorName":"陈勇"}],"doi":"10.3969/j.issn.1003-1545.2012.03.019","fpage":"79","id":"7eaae773-c437-4c27-b777-cc62d5c45f12","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"184625fd-634f-4e96-871a-10d0e4b0a328","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"959badd1-b884-4458-9498-16ee5657a458","keyword":"膨润土","originalKeyword":"膨润土"},{"id":"d0679675-c2b5-4fe0-8bff-c36952190d8d","keyword":"复合光催化材料","originalKeyword":"复合光催化材料"}],"language":"zh","publisherId":"clkfyyy201203019","title":"TiO2/膨润土复合光催化材料研究进展","volume":"27","year":"2012"},{"abstractinfo":"利用-Si-O-共价键将离子液体嫁接在纳米TiO2表面,制备离子液体@TiO2纳米复合材料,并利用红外光谱、差热分析、元素分析等技术手段进行了分析.光催化性能研究表明,在紫外光照射60 min后,[C8 tespim] Br@TiO2([C8tespim]:N-3-(3-三乙氧基硅烷基丙基)4,5-二氢咪唑)复合材料能够将甲基橙100%脱色,明显优于TiO2 P25的光催化降解性能.同时发现其光催化性能与阴离子类型有密切关系,活性顺序为[C8tespim] Br@TiO2<[C8tespim] PF6@TiO2<[C8tespim] Tf2N@TiO2.","authors":[{"authorName":"于宗龙","id":"d8943cd1-be6b-430f-b7aa-3b07bb1bba05","originalAuthorName":"于宗龙"},{"authorName":"贾春晓","id":"6036e302-1b12-42d8-9e26-25b5f6c83a5b","originalAuthorName":"贾春晓"},{"authorName":"路鑫","id":"1e3ee4a8-0db8-44dc-9686-a694c2624e81","originalAuthorName":"路鑫"},{"authorName":"韩海港","id":"e7b48005-5703-41d6-8e0b-88c46c29ea71","originalAuthorName":"韩海港"},{"authorName":"辛炳炜","id":"da63756a-fb8e-48f6-a929-0785f6889c13","originalAuthorName":"辛炳炜"}],"doi":"10.11944/j.issn.1000-0518.2016.04.150269","fpage":"459","id":"d7bbb07b-27fb-4af0-8cb1-ece3f46ceddb","issue":"4","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"d8bd3aef-559d-4f1c-b09d-cf02a9216add","keyword":"离子液体TiO2纳米复合材料","originalKeyword":"离子液体TiO2纳米复合材料"},{"id":"72e52146-0310-47e7-8dcf-a6be8448eabf","keyword":"光催化剂","originalKeyword":"光催化剂"},{"id":"570e5922-042b-48de-b56c-adb8121c7be4","keyword":"甲基橙","originalKeyword":"甲基橙"}],"language":"zh","publisherId":"yyhx201604012","title":"离子液体@TiO2纳米复合材料的制备及其光催化性能","volume":"33","year":"2016"},{"abstractinfo":"以TiCl4为前驱体,α- Fe2O3、α-FeOOH为载体,采用水解沉淀法制备TiO2/α-Fe2O3和TiO2/α-FeOOH两种纳米复合光催化材料.采用X射线衍射分析(XRD)和透射电子显微镜(TEM)等对样品的晶相组成、形貌和微结构进行表征.结果表明,TiO2/α-Fe2O3复合材料由赤铁矿和金红石相TiO2组成;TiO2/α-FeOOH复合材料由水合氧化铁和金红石相TiO2组成.TiO2/α-Fe2O3复合材料中颗粒状TiO2能包覆在粒状氧化铁红表面,形成厚度范围在5~20 nm左右的薄层;TiO2/α-FeOOH复合材料是一种核壳结构,厚度范围在100~150 nm的针状TiO2聚集体为壳,能完整的包覆核层氧化铁黄.采用UV-vis光谱和甲基橙降解对其光催化活性进行评价,结果表明纳米TiO2与α-Fe2O3、α-FeOOH分别构成复合材料后,两者之间存在协同效应.","authors":[{"authorName":"梁凯","id":"5a39726a-2b2b-4ad1-93a2-4cca0cb6e8c3","originalAuthorName":"梁凯"},{"authorName":"唐丽永","id":"0db563b7-a80e-4083-967a-55418cf29fca","originalAuthorName":"唐丽永"},{"authorName":"李国华","id":"0e16b52e-bb48-49e9-b001-96714fa3e145","originalAuthorName":"李国华"}],"doi":"","fpage":"1011","id":"fd46f295-51c0-44be-a9de-e1e4512502e6","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"37b6850c-53bb-43a8-8527-671af6502367","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"80fbe350-6462-4d62-88f0-1372a391e0e1","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"2d0f7e46-6990-4dba-bf54-fbbe79dea777","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"00b68ace-3a3d-4e4d-ac79-75c2335a976a","keyword":"光催化活性","originalKeyword":"光催化活性"}],"language":"zh","publisherId":"rgjtxb98201104038","title":"TiO2/α-Fe2O3和TiO2/叶FeOOH纳米复合材料的制备与表征","volume":"40","year":"2011"},{"abstractinfo":"纳米TiO2作为微波吸收剂,掺入到水泥材料中,使水泥基复合材料具有一定的吸波功能.通过对掺有锐钛型TiO2、纳米锐钛型TiO2和纳米金红石型TiO2的水泥基复合材料的导电性能、电磁参数和反射率的分析比较,探讨了纳米TiO2与水泥复合材料的吸波机理.由于纳米TiO2的小尺寸效应、表面效应和量子尺寸效应,使纳米TiO2与水泥复合材料在高频段体现更好的吸波性能,当纳米TiO2掺量为5%时,在12.5~18GHz频率范围内复合材料的反射率基本上都<-0dB,最小反射率达-16.34dB.","authors":[{"authorName":"熊国宣","id":"3f4ab6ad-c705-421a-8ff8-d3ce949449dd","originalAuthorName":"熊国宣"},{"authorName":"陈阳如","id":"18b383b9-bd78-42c4-8951-d3f1bebd115e","originalAuthorName":"陈阳如"},{"authorName":"李坚利","id":"f0ab695e-f80f-491a-9573-c6a6bc63e47f","originalAuthorName":"李坚利"},{"authorName":"叶越华","id":"538abe07-c523-408b-bc85-31988164da19","originalAuthorName":"叶越华"},{"authorName":"左跃","id":"fdd74c05-2d83-4d32-8a82-b42987514f91","originalAuthorName":"左跃"}],"doi":"","fpage":"836","id":"f24a9fe7-fa02-4a0e-a867-f02973fb4c0e","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7fd5e426-e18e-440d-aa28-a903c7b7ca42","keyword":"纳米氧化钛","originalKeyword":"纳米氧化钛"},{"id":"4c9c2b0c-90b0-4f8a-8c30-75330292e1fa","keyword":"水泥","originalKeyword":"水泥"},{"id":"3b2da175-5a94-4291-a212-51f2aa1cf3a1","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"73c45426-09bb-4633-a6b6-7f75533679c1","keyword":"吸波机理","originalKeyword":"吸波机理"}],"language":"zh","publisherId":"gncl200705043","title":"纳米TiO2与水泥复合材料的吸波机理探讨","volume":"38","year":"2007"}],"totalpage":12781,"totalrecord":127802}