{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"","authors":[{"authorName":"","id":"a5a689d9-5fcb-46cf-b4ca-5e645128d397","originalAuthorName":""},{"authorName":"","id":"0977da94-e677-4226-9351-54ddf09b51a1","originalAuthorName":""},{"authorName":"","id":"fece24d8-6995-4ab7-8bcd-f4acadf2b9e9","originalAuthorName":""},{"authorName":"","id":"c8147956-1db2-4864-af45-ffb06d43dcd3","originalAuthorName":""},{"authorName":"","id":"e52f77fc-c68b-4df2-9ffd-fd9e82670b5b","originalAuthorName":""}],"doi":"","fpage":"43","id":"d9990aaf-2ab8-411f-bdb4-8869b58bf3d0","issue":"5","journal":{"abbrevTitle":"GTYJXBYWB","coverImgSrc":"journal/img/cover/GTYJXBEN.jpg","id":"1","issnPpub":"1006-706X","publisherId":"GTYJXBYWB","title":"钢铁研究学报(英文版)"},"keywords":[{"id":"96a7be63-4fb6-4cda-923e-1f9f01705634","keyword":"数据挖掘技术","originalKeyword":"数据挖掘技术"},{"id":"0d6e1271-2e2c-4577-88fa-ee14f612ea01","keyword":"有限元方法","originalKeyword":"有限元方法"},{"id":"cbd3eaa5-f795-4edf-b8a9-95c135e4a443","keyword":"过程模型","originalKeyword":"过程模型"},{"id":"4fc28da9-2d7c-4d7d-9cf4-2eacb4d4437d","keyword":"轧制过程","originalKeyword":"轧制过程"},{"id":"083e993e-3ecc-49ec-a6ca-8a70193eae4e","keyword":"皮肤","originalKeyword":"皮肤"},{"id":"d1efe124-a025-48e1-9364-c8e46dcaa8a7","keyword":"有限元模型","originalKeyword":"有限元模型"},{"id":"59596547-9d35-4fe1-98dc-99d49f3fc23f","keyword":"道次","originalKeyword":"道次"},{"id":"382fe26f-fbf8-484c-8dfe-3a4722bc1e2d","keyword":"预测模型","originalKeyword":"预测模型"}],"language":"zh","publisherId":"gtyjxb-e201205007","title":"Modelling a Skin-Pass Rolling Process by Means of Data Mining Techniques and Finite Element Method","volume":"19","year":"2012"},{"abstractinfo":"针对传统板对板的自学习模型不能修正轧件个体差异的缺陷,提出了道次对道次的道次修正模型.该模型利用上道次的实测轧制数据,如实测轧制力、轧制速度、测温仪温度等,通过道次出口厚度再计算模块、钢板温度修正模块和轧制力短期修正模块精确计算出当前钢板的实际状态,然后通过剩余道次再计算模块对后续未轧道次的辊缝进行修正.实际应用表明,该道次修正模型投入使用后,轧制力预报精度和成品厚度精度有了很大提高.","authors":[{"authorName":"崔海涛","id":"a959c165-8b4b-4c15-9cdd-93d4b88aae44","originalAuthorName":"崔海涛"},{"authorName":"胡贤磊","id":"0e6fdf98-b24d-47fd-bb06-74cd9917b480","originalAuthorName":"胡贤磊"},{"authorName":"丁敬国","id":"b54b86a3-75b2-4369-9bfa-e6b683fe0634","originalAuthorName":"丁敬国"},{"authorName":"许磊","id":"9343df3a-6f98-4ec2-b196-fbc6a6db75ea","originalAuthorName":"许磊"},{"authorName":"王国栋","id":"c6c381f4-61e9-4174-bf00-9ee5a03f68e2","originalAuthorName":"王国栋"}],"doi":"","fpage":"16","id":"97174142-ab59-4a35-8ee8-73d692d379c6","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"696eb258-3241-4afc-ab41-66fcd55a9b59","keyword":"中厚板","originalKeyword":"中厚板"},{"id":"a879fa7e-3e77-4c22-8144-c75631f67b38","keyword":"道次修正","originalKeyword":"道次修正"},{"id":"e30ab419-38f3-4881-ad57-51df43f4c430","keyword":"测量值","originalKeyword":"测量值"},{"id":"242fd1e5-c2a1-4233-97b7-e53af1b0d7a6","keyword":"轧制规程","originalKeyword":"轧制规程"}],"language":"zh","publisherId":"gtyjxb201002005","title":"中厚板生产中的道次修正模型","volume":"22","year":"2010"},{"abstractinfo":"中厚板道次规划算法是中厚板过程控制技术的核心。比较了Siemens采用SQP算法、国内综合等储备方法以及简化的二次型规划算法。Siemens的SQP算法复杂,参数配置困难;综合等储备方法的算法较简单,但是对物理模型和边界条件要求较高,存在计算得不出结果的问题;简化的二次型规划算法相比其它2个算法稳定性和参数配置都比较容易,计算速度快。实践表明,该方法更适合工业现场的在线应用。","authors":[{"authorName":"王琦","id":"72d6e146-1a3f-4f0d-9470-13745453770e","originalAuthorName":"王琦"},{"authorName":"杨雁青","id":"c9df81ba-900b-4aa9-99a6-b364b43348cc","originalAuthorName":"杨雁青"},{"authorName":"罗文涛","id":"cc058036-1800-40e8-9e39-bbc718129c59","originalAuthorName":"罗文涛"},{"authorName":"王健","id":"0efee26a-46ff-4bd5-8846-c74196a5a4e5","originalAuthorName":"王健"},{"authorName":"苗雨川","id":"1a02480a-8dce-440d-94cf-521df1dae2f9","originalAuthorName":"苗雨川"}],"doi":"","fpage":"13","id":"a7e09486-338d-48ce-9afd-7b8b18d5eac0","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"cde51005-2d67-4064-93c0-31483faf8253","keyword":"算法","originalKeyword":"算法"},{"id":"27009488-323c-4c1a-a9e9-14dad43c803b","keyword":"轧制规程","originalKeyword":"轧制规程"},{"id":"c76fcfd0-383d-4c88-bcde-1c011753f67a","keyword":"物理模型","originalKeyword":"物理模型"},{"id":"c32e14a4-2581-4b2e-b054-8f9cb4560840","keyword":"二次型规划","originalKeyword":"二次型规划"},{"id":"237d18f1-eb46-410a-8e60-26152525b676","keyword":"工业应用","originalKeyword":"工业应用"}],"language":"zh","publisherId":"gtyj201201005","title":"中厚板轧制道次规划算法的研究","volume":"40","year":"2012"},{"abstractinfo":"为精确预测轧件的温度场、优化轧制工艺和提高最终产品的质量,通过轧制试验和二维弹塑性有限元法,用MSC、Merc软件建立了3104铝合金板材单道次热轧有限元温度模型,分析了空冷、接触传热、塑性变形热和摩擦热等传热方式对轧板温度的影响以及轧板初始温度、轧制速度、接触传热系数和压下量等轧制参数的轧板温降灵敏度系数.结果表明:在单道次热轧过程中,接触传热对轧板温度的影响最大,塑性变形热的影响次之,摩擦热的影响较小,空冷的影响最小;轧板初始温度、轧制速度、接触传热系数和压下量等轧制参数的轧板温降灵敏度系数依次减小.","authors":[{"authorName":"康煜华","id":"601c9b29-45ed-4d83-9824-ab5778796d39","originalAuthorName":"康煜华"},{"authorName":"刘义伦","id":"140e0c61-7e4b-4448-bea5-87f97e30817b","originalAuthorName":"刘义伦"},{"authorName":"何玉辉","id":"d026480b-8209-490e-916c-ae77e16faf8d","originalAuthorName":"何玉辉"}],"doi":"","fpage":"92","id":"a5148368-6ae8-4417-a7d9-3d3172d24db3","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ad9a6fd0-275b-4280-aacc-05e42a5b0714","keyword":"热轧","originalKeyword":"热轧"},{"id":"04577d77-3f9c-4262-8e4d-f0a5053c3592","keyword":"温度场","originalKeyword":"温度场"},{"id":"21c9add9-5def-4e02-a067-468d691cf52e","keyword":"有限元法","originalKeyword":"有限元法"},{"id":"64320a52-4d57-42ee-a800-8b24804b07b4","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"jxgccl201004025","title":"铝合金单道次热轧过程的温度模拟","volume":"34","year":"2010"},{"abstractinfo":"采用电子束自由成形的方法成形出TC4钛合金板材,然后进行热轧,通过分析不同轧制工艺条件下的微观组织,研究了轧制工艺参数对电子束自由成形板材微观组织的影响规律.研究表明,与电子束自由成形后的板材相比,经轧制或轧制后热处理的板材组织主要是热机械加工组织,原始组织中的孔洞也得到弥合.轧制变形是改善电子束自由成形后钛合金组织的一种有效手段.","authors":[{"authorName":"赵冰","id":"2983fd16-6d5f-4874-adc7-9fe9526477de","originalAuthorName":"赵冰"},{"authorName":"侯红亮","id":"03178648-a3d9-4c80-9f64-b5e2646bd01a","originalAuthorName":"侯红亮"},{"authorName":"李志强","id":"f0bc36b6-3357-476f-bdac-2d8233c12d06","originalAuthorName":"李志强"},{"authorName":"廖金华","id":"cb38251d-bd74-4125-ad4e-4caf48cd316b","originalAuthorName":"廖金华"},{"authorName":"锁红波","id":"4245392e-9ee8-447b-80fe-803eff52aa65","originalAuthorName":"锁红波"},{"authorName":"任学平","id":"52109c06-c077-422e-b27e-d21472bb4f6e","originalAuthorName":"任学平"},{"authorName":"吕政","id":"62b25181-a8ca-4f45-9cd8-50fcbfcb0422","originalAuthorName":"吕政"}],"doi":"10.11896/j.issn.1005-023X.2015.08.001","fpage":"1","id":"8f917727-26e9-4e0a-8d02-b32eefde156b","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6e4ff51a-90d6-4c50-890e-84baef8a3885","keyword":"电子束自由成形","originalKeyword":"电子束自由成形"},{"id":"cabe9db1-9fd2-4be0-b0d8-ea4ff64d26d2","keyword":"热轧","originalKeyword":"热轧"},{"id":"bc93db22-838f-4cf1-8593-dd5c8b15405d","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"88365d9b-fdb2-4723-8507-61fdae5f3670","keyword":"轧制温度","originalKeyword":"轧制温度"},{"id":"e14e97aa-4155-438b-9562-f14f62975824","keyword":"变形量","originalKeyword":"变形量"},{"id":"4a3f403d-94b4-4bc6-9ef6-48b49509bbc4","keyword":"道次","originalKeyword":"道次"}],"language":"zh","publisherId":"cldb201508001","title":"TC4钛合金电子束自由成形/热轧加工组织演变规律研究","volume":"29","year":"2015"},{"abstractinfo":"在Gleebe-1500热力模拟机上,采用双道次间隙式等温热压缩实验,对ZK60镁合金双道次热变形过程中的道次间软化规律进行了研究.变形温度为200℃和300℃,应变速率为0.005s-1和0.05s-1,道次间隙停留时间在1~300s之间变化.结果表明:材料在变形道次间的主要静态软化机制是亚动态再结晶,建立了亚动态再结晶动力学模型,相应的亚动态再结晶激活能约为50.12kJ/mol,远小于动态再结晶激活能.","authors":[{"authorName":"郭强","id":"a3cb8ee3-e775-4ac9-aa33-5421f883ed5b","originalAuthorName":"郭强"},{"authorName":"严红革","id":"2f69fa42-3f60-4d06-ae2c-e7f897b36ce9","originalAuthorName":"严红革"},{"authorName":"陈振华","id":"5274c44f-ded9-4add-bc7e-b67416a32c39","originalAuthorName":"陈振华"},{"authorName":"张辉","id":"40ad3b31-621b-4e27-aa09-97d064a74a94","originalAuthorName":"张辉"}],"doi":"10.3969/j.issn.1001-4381.2006.08.002","fpage":"8","id":"0e4e93be-adb5-49aa-844c-8bb61149e5cb","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"145d292f-d543-4477-8ba2-fd1678dd3ccb","keyword":"ZK60镁合金","originalKeyword":"ZK60镁合金"},{"id":"b9ef916c-ba0f-4474-a6e5-17a0e0d7ff6d","keyword":"高温压缩","originalKeyword":"高温压缩"},{"id":"a6699559-d15d-4a6a-a228-ee6511bedf1a","keyword":"亚动态再结晶","originalKeyword":"亚动态再结晶"}],"language":"zh","publisherId":"clgc200608002","title":"ZK60镁合金高温压缩道次间软化规律的研究","volume":"","year":"2006"},{"abstractinfo":"在中厚板轧机无液压弯辊条件下,为防止传统轧制规程计算方法造成的板形问题,提出了一种末道次轧制力锁定的轧制规程计算方法.该方法将操作工提前给定的末道次轧制力作为轧制规程计算的约束条件之一,通过控制道次规程末道次的轧制力达到控制板形的目的.实际应用结果表明,该方法使操作工能够根据经验对板形进行有效控制,明显减少中浪、边浪等板形问题,具有良好的使用价值.","authors":[{"authorName":"崔海涛","id":"7d4431be-81cf-45c5-8feb-993d1f26b5f9","originalAuthorName":"崔海涛"},{"authorName":"许磊","id":"dc6a44af-0c02-4c5b-8abb-ebf50589891e","originalAuthorName":"许磊"},{"authorName":"王国栋","id":"aa9561d1-2e49-48c2-ab74-7cf9967f10d6","originalAuthorName":"王国栋"}],"doi":"","fpage":"53","id":"7ea511c9-8d48-4f10-ae75-484f753e82a2","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"30792489-c921-4eeb-97a7-5a69430d4ad7","keyword":"末道次轧制力","originalKeyword":"末道次轧制力"},{"id":"adc4f30a-697c-41eb-a754-81192a6efbe9","keyword":"中厚板","originalKeyword":"中厚板"},{"id":"aa589382-7998-4172-a9ff-54b6358a6d2a","keyword":"轧制规程","originalKeyword":"轧制规程"}],"language":"zh","publisherId":"gt201105012","title":"末道次轧制力锁定法在中厚板规程计算中的应用","volume":"46","year":"2011"},{"abstractinfo":"在中厚板轧机无液压弯辊条件下,为防止传统轧制规程计算方法造成的板形问题,提出了一种末道次轧制力锁定的轧制规程计算方法。该方法将操作工提前给定的末道次轧制力作为轧制规程计算的约束条件之一,通过控制道次规程末道次的轧制力达到控制板形的目的。实际应用结果表明,该方法使操作工能够根据经验对板形进行有效控制,明显减少中浪、边浪等板形问题,具有良好的使用价值。","authors":[{"authorName":"崔海涛,许磊,王国栋","id":"e04a67a4-5000-4506-8990-d7e46e1a63cf","originalAuthorName":"崔海涛,许磊,王国栋"}],"categoryName":"|","doi":"","fpage":"53","id":"a985e536-a70a-45be-9f39-1eb8c40aad5f","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1ebd06a9-5833-4b7f-a69e-83cc7f9685f1","keyword":"末道次轧制力; 中厚板; 轧制规程","originalKeyword":"末道次轧制力; 中厚板; 轧制规程"}],"language":"zh","publisherId":"0449-749X_2011_5_11","title":"末道次轧制力锁定法在中厚板规程计算中的应用","volume":"46","year":"2011"},{"abstractinfo":"采用Gleeble-1500热模拟试验机对FGH96合金进行双道次变形量为45%+25%的等温热压缩实验,研究了变形温度为1050~1125℃,变形速率为0.001~0.1 s-1的热变形行为和组织变化,建立了包含应变量、变形温度、变形速率的双道次热变形本构方程,结果表明:FGH96合金的第1道次和第2道次的压缩应力应变曲线有相同的变化规律,两道次流变应力均受到γ'溶解以及由此造成晶粒长大的影响;由本构方程计算的模拟值与实验实测值具有良好的拟合性,模拟值能真实地反映应力在不同变形条件下的变化规律;选择变形温度:1075~1100℃、变形速率:0.01~0.1 s以时能获得理想的热变形组织.","authors":[{"authorName":"方彬","id":"9db86c14-c06a-41d7-bd14-4bbeea3d8309","originalAuthorName":"方彬"},{"authorName":"纪箴","id":"2bf9a227-b6f2-44ac-99c2-559dccd34458","originalAuthorName":"纪箴"},{"authorName":"田高峰","id":"655b039a-6f3a-478f-b3c8-5ccb09472f82","originalAuthorName":"田高峰"},{"authorName":"贾成厂","id":"b9dd1c06-5d95-4cf6-80fb-ba146cdd5972","originalAuthorName":"贾成厂"},{"authorName":"胡本芙","id":"784457eb-f828-42bd-8f5b-fa09354b03ed","originalAuthorName":"胡本芙"},{"authorName":"王聪聪","id":"59717c42-8a28-43b1-9430-41882e1538fe","originalAuthorName":"王聪聪"}],"doi":"","fpage":"3089","id":"b62778c8-0863-4154-a718-9ff1f02f1460","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"99c479c3-967e-4deb-8661-df0f1c76f84a","keyword":"FGH96合金","originalKeyword":"FGH96合金"},{"id":"b4a644fa-2391-481c-b1df-721d2cd682c8","keyword":"双道次","originalKeyword":"双道次"},{"id":"29ecc569-6829-49eb-8ade-4e120b191607","keyword":"热变形","originalKeyword":"热变形"},{"id":"51836951-4fc7-46c4-9fdf-2e8bc603a05a","keyword":"本构方程","originalKeyword":"本构方程"}],"language":"zh","publisherId":"xyjsclygc201412044","title":"FGH96粉末高温合金双道次热变形行为及其本构方程","volume":"43","year":"2014"},{"abstractinfo":"成功地实现了珠光体钢65Mn的等径弯曲通道变形(ECAP),并研究在650℃不同ECAP变形道次的条件下渗碳体球化的演化过程.结果表明,渗碳体在ECAP热变形过程中表现出明显的加速球化特征.第一道次ECAP热变形后,片状的渗碳体演化为细小碎块的聚集体;第二道次热变形后,渗碳体实质上已破碎,呈现出颗粒状和球化渗碳体的主要形貌特征;第五道次ECAP热变形后,进一步演化为超细的球状渗碳体均匀分布于超细晶铁素体基体的组织.","authors":[{"authorName":"王立忠","id":"62e89d70-788f-429d-975f-75d9d8aac040","originalAuthorName":"王立忠"},{"authorName":"王经涛","id":"055b40ab-637f-43c3-93fc-f1e4099a703f","originalAuthorName":"王经涛"},{"authorName":"黄俊霞","id":"78daff82-0efe-437c-98bf-d795047fe1c3","originalAuthorName":"黄俊霞"},{"authorName":"郭成","id":"0b7a88ba-e885-4b74-95c0-e9f8fee0f45a","originalAuthorName":"郭成"},{"authorName":"陈金德","id":"19de3c34-f2d9-4667-b3af-66366aabc472","originalAuthorName":"陈金德"}],"doi":"10.3969/j.issn.1005-0299.2006.01.008","fpage":"25","id":"9f2b668c-ddb3-445c-95f2-7961c846735e","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"4dd41dbf-f142-43c6-8b72-e0e80650e99d","keyword":"等径弯曲通道变形","originalKeyword":"等径弯曲通道变形"},{"id":"00a8d17e-089c-43ed-96cc-4cb791b8e81c","keyword":"超细晶材料","originalKeyword":"超细晶材料"},{"id":"54034555-26b2-4b9e-b29e-715d363be8b3","keyword":"渗碳体","originalKeyword":"渗碳体"}],"language":"zh","publisherId":"clkxygy200601008","title":"ECAP变形道次对珠光体钢中渗碳体球化的影响","volume":"14","year":"2006"}],"totalpage":1112,"totalrecord":11119}