{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用光学显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉伸试验机和硬度仪分析了薄板坯连铸连轧生产的30CrM0钢的热轧微观组织和力学性能.结果表明,该钢主要由珠光体和铁素体组成,珠光体的表观片层间距在0.5 μm以下,铁素体晶粒尺寸在5 μm以下.该钢热轧屈服强度为461 MPa,抗拉强度达677 MPa,硬度为96.8 HRB,伸长率达23%.与传统厚板坯连铸工艺生产的30CrMo钢热轧组织比,CSP工艺生产的30CrMo钢的组织更细小,综合性能更优良.","authors":[{"authorName":"黄刚","id":"72e076ec-1761-4a1d-91e8-1aaba9cdc1ff","originalAuthorName":"黄刚"},{"authorName":"温德智","id":"165870a6-91fd-4f40-bc09-151c995b638a","originalAuthorName":"温德智"},{"authorName":"国华","id":"b22a43bf-5966-4dfb-ace7-1f6e5e0d2a2d","originalAuthorName":"焦国华"},{"authorName":"周春泉","id":"1aa00271-e4b4-4d90-a481-bd61bc910f3e","originalAuthorName":"周春泉"},{"authorName":"周明伟","id":"17f575bb-b514-4cf8-9708-01d165ad3f4b","originalAuthorName":"周明伟"},{"authorName":"陈建新","id":"26c73f88-d505-4ee3-bfc5-772b02a014b7","originalAuthorName":"陈建新"},{"authorName":"吴开明","id":"75e88e14-82a6-45ce-b106-6ad75aca597e","originalAuthorName":"吴开明"}],"doi":"","fpage":"109","id":"ca16f883-07d2-47ab-91f5-04e0f7efceed","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"b9405218-bff0-4469-a56e-77c1941bfc71","keyword":"薄板坯连铸连轧","originalKeyword":"薄板坯连铸连轧"},{"id":"37669ab1-ff33-4f6e-bea0-9a1bf1202db8","keyword":"CSP","originalKeyword":"CSP"},{"id":"6b99c5c7-025b-4fbb-92d0-769488749fab","keyword":"珠光体","originalKeyword":"珠光体"},{"id":"5cf2ae65-0178-4d65-a21a-ba2369afb9f4","keyword":"铁素体","originalKeyword":"铁素体"},{"id":"f1bca112-9b94-4148-a545-ab6f98667214","keyword":"高强度钢","originalKeyword":"高强度钢"}],"language":"zh","publisherId":"jsrclxb201106021","title":"薄板坯连铸连轧30CrM0钢的热轧组织与力学性能","volume":"32","year":"2011"},{"abstractinfo":"利用光学显微镜,扫描电子显微镜 (SEM),透射电子显微镜 (TEM) 和拉伸试验机,硬度仪分析薄板坯连铸连轧工艺CSP生产的高碳高强度钢65Mn的热轧板微观组织与力学性能.该钢主要由珠光体和少量多边形铁素体组成,珠光体片层间距在0.2~0.5μm之间.该钢的平均屈服强度为489MPa,硬度为HRC22.3,伸长率达到18%;没有明显的C和Mn元素偏析,力学性能分布均匀.通过与传统连铸工艺生产的65Mn钢热轧组织与力学性能对比,CSP工艺生产的65Mn钢的组织更加细小,性能更加优良和均匀.","authors":[{"authorName":"黄刚","id":"83063822-a037-4dba-9f93-785a679c00d5","originalAuthorName":"黄刚"},{"authorName":"国华","id":"d7037249-44a9-4e52-83a6-117e07e30b0c","originalAuthorName":"焦国华"},{"authorName":"温德智","id":"b0a423d7-737b-428f-98a5-541a274a7f8c","originalAuthorName":"温德智"},{"authorName":"周春泉","id":"8ca356cf-a25b-4009-bf47-363eb7a4f5eb","originalAuthorName":"周春泉"},{"authorName":"陈建新","id":"b0bcc888-a5dd-43b7-b001-a0805b6a36f4","originalAuthorName":"陈建新"},{"authorName":"周明伟","id":"444013cc-4917-4c8d-a1af-64d70e1f1f83","originalAuthorName":"周明伟"},{"authorName":"吴开明","id":"3b8c17bd-eda3-42f8-8996-f52805477f2f","originalAuthorName":"吴开明"}],"doi":"10.3969/j.issn.1001-4381.2010.08.016","fpage":"72","id":"fde42351-d5af-4a4e-a832-1c4ed3332e85","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"14711bee-7987-4e42-8118-56d7bb43262a","keyword":"CSP","originalKeyword":"CSP"},{"id":"1a6c5bcd-28d8-4e3a-95b9-ca8c4f0979d2","keyword":"珠光体","originalKeyword":"珠光体"},{"id":"c553c7a0-c333-4279-85b1-1a73a9052c6e","keyword":"铁素体","originalKeyword":"铁素体"},{"id":"341d99d4-e865-4326-afaf-92545b563800","keyword":"高强度钢","originalKeyword":"高强度钢"}],"language":"zh","publisherId":"clgc201008016","title":"薄板坯连铸连轧65Mn钢的热轧组织与力学性能","volume":"","year":"2010"},{"abstractinfo":"

采用磁控共溅射Ru和MoC靶制备非晶RuMoC薄膜。用四探针仪(FPPT)、X射线光电子能谱仪(XPS)、高分辨率透射电镜(HRTEM)和小角掠射X射线衍射仪(GIXRD)表征不同掺杂组分RuMoC薄膜和不同温度退火态Cu/RuMoC/p-SiOC∶H/Si多层膜系的方块电阻、成分和微观结构。结果表明,通过调控Ru膜中掺入Mo和C元素的含量能够实现RuMoC合金薄膜微结构设计及抑制膜体残余氧含量,且当MoC和Ru靶的溅射功率比为0.5时获得的RuMoC II薄膜综合性能最佳;500 ℃退火态RuMoC II薄膜中C-Mo和C-Ru化学键均未出现大量断裂,两者协同作用抑制了RuMoC薄膜再结晶和膜体氧含量升高,是Cu/RuMoC II/p-SiOC∶H/Si多层膜系具有高温热稳定性和优异电学性能的主要机制。

","authors":[{"authorName":"邹建雄","id":"7d30702e-a1c3-4ee1-8b9b-647c95ef22d5","originalAuthorName":"邹建雄"},{"authorName":"刘波","id":"fb41b8ef-4327-4239-8997-6228de5efe3d","originalAuthorName":"刘波"},{"authorName":"林黎蔚","id":"b7ef3421-04f1-4150-9c03-eb8a284cdfc5","originalAuthorName":"林黎蔚"},{"authorName":"任丁","id":"41852d04-2810-4e38-9db3-5eabd7671ca0","originalAuthorName":"任丁"},{"authorName":"国华","id":"98065a94-efc0-4ce7-b5c9-1df11a55d3db","originalAuthorName":"焦国华"},{"authorName":"鲁远甫","id":"07fb1188-b47c-4feb-bbe9-173f1e45c776","originalAuthorName":"鲁远甫"},{"authorName":"徐可为","id":"777e5015-d3a2-41c2-88cb-c597cfb0aea5","originalAuthorName":"徐可为"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00082","fpage":"31","id":"3d32e97c-7cdd-4836-8308-9f1c926a6959","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1d42d64d-f2ef-45a4-a5ad-1f7a995cedf9","keyword":"非晶RuMoC","originalKeyword":"非晶RuMoC"},{"id":"14731cbe-bbb3-418f-93f3-0a86bed79013","keyword":"无籽晶阻挡层","originalKeyword":"无籽晶阻挡层"},{"id":"0bf18671-4714-4c50-9d57-0992125499b7","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"582dd88f-d643-42e6-9918-5677286cf964","keyword":"非铜互连","originalKeyword":"非铜互连"}],"language":"zh","publisherId":"C20160082","title":"MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究","volume":"53","year":"2017"},{"abstractinfo":"介绍了一种新的金湿法精炼工艺的试验研究过程及取得的研究结果.研究结果表明:该工艺采用一种弱酸性混合除杂剂取代了传统金提纯过程中所用的强酸,除去金泥中银、铜等元素,极大地降低了生产成本,并可按要求产出不同品位的产品,消除了环境污染,具有较高的应用价值.","authors":[{"authorName":"国华","id":"e29040f3-bec7-4c54-8cc1-6fa577bfa44f","originalAuthorName":"焦国华"},{"authorName":"李峰","id":"8a85a2bc-9a19-4f97-967e-6e762583586d","originalAuthorName":"李峰"}],"doi":"10.3969/j.issn.1001-1277.2003.12.012","fpage":"34","id":"4ac09375-8636-4c73-ba68-985d9a705b17","issue":"12","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"b347ab6c-67c7-406e-b2e9-d8e9d932f65b","keyword":"金湿法精炼","originalKeyword":"金湿法精炼"},{"id":"1842afd0-a60e-41e1-9d18-e117fd03fa14","keyword":"环境保护","originalKeyword":"环境保护"},{"id":"d085d553-4de3-4ee9-a17c-c0543a8e2ba0","keyword":"试验研究","originalKeyword":"试验研究"}],"language":"zh","publisherId":"huangj200312012","title":"一种金湿法精炼新工艺的试验研究","volume":"24","year":"2003"},{"abstractinfo":"利用Formaster热膨胀仪和金相法,测定了薄板坯连铸连轧工艺(CSP)生产的高碳高强度65Mn钢的CCT曲线,测得临界点为Ac1=719℃,Ac3=747℃,M.=267℃,临界冷却速率为35℃/s.使用扫描电镜和硬度仪分析表明,薄板坯连铸连轧工艺生产的65Mn钢的淬火组织细小均匀,硬度高,比传统工艺生产的65Mn钢的淬透性好.","authors":[{"authorName":"黄刚","id":"34a81fa8-60e2-4669-a241-46d34ea80613","originalAuthorName":"黄刚"},{"authorName":"吴开明","id":"bcb59bb2-af50-47b5-985e-d73a422d3037","originalAuthorName":"吴开明"},{"authorName":"周峰","id":"5457d040-76b1-45ba-b817-efa6ed741b05","originalAuthorName":"周峰"},{"authorName":"周春泉","id":"f2dee2d2-7d4c-423a-828a-971c7dba70d3","originalAuthorName":"周春泉"},{"authorName":"周明伟","id":"5cbc6605-206a-459c-8376-e66c7015683a","originalAuthorName":"周明伟"},{"authorName":"国华","id":"bc6f83c1-1147-4857-b07c-0fc6080d86ee","originalAuthorName":"焦国华"}],"doi":"10.3969/j.issn.1001-4381.2012.04.011","fpage":"52","id":"4b125076-dac1-4db3-b536-48ef90d91b79","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c72d238e-e82d-4920-af9a-4e025b488730","keyword":"薄板坯连铸连轧","originalKeyword":"薄板坯连铸连轧"},{"id":"1432b8e2-366c-4a9f-9383-ea29942d708e","keyword":"CSP","originalKeyword":"CSP"},{"id":"f848e269-f782-4c89-9dfe-dcf7d9bab7fc","keyword":"CCT曲线","originalKeyword":"CCT曲线"},{"id":"78b1b54b-b055-4b73-b929-6478b77a47ae","keyword":"淬透性","originalKeyword":"淬透性"}],"language":"zh","publisherId":"clgc201204011","title":"薄板坯连铸连轧生产65Mn钢的CCT曲线和淬透性","volume":"","year":"2012"},{"abstractinfo":"介绍了一种全泥氰化炭浆提金工艺含氰尾矿处理技术新工艺方法.该方法基于采用压滤机将含氰尾矿浆压滤进行固液分离,滤饼送至尾矿库堆放,滤液用锌粉置换回收金、银;置换后的尾液采用酸化中和法处理,回收重金属离子,含氰废水返回流程利用.生产实践表明,该工艺不但综合回收尾液中的金、银、铜等有价元素,实现了含氰废水闭路循环,而且节约了处理成本,解决了尾渣的堆放难题和环境污染,具有极大的经济效益和社会效益.","authors":[{"authorName":"李峰","id":"1fe72dbc-d20f-4a36-9d1c-fdaa8e9113ad","originalAuthorName":"李峰"},{"authorName":"国华","id":"7fd7664c-6e90-4388-a404-8c8530806532","originalAuthorName":"焦国华"}],"doi":"10.3969/j.issn.1001-1277.2003.09.013","fpage":"42","id":"4cd1aea1-5e73-4550-a2dc-0979e772e167","issue":"9","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"79a5db5f-d98e-4c89-83f0-af327a7b587a","keyword":"全泥氰化提金工艺","originalKeyword":"全泥氰化提金工艺"},{"id":"3ac3e368-c2e1-4479-a0f9-317a05001f88","keyword":"含氰尾矿","originalKeyword":"含氰尾矿"},{"id":"cefa8825-53ad-4209-8a85-6b1f553fe400","keyword":"压滤机","originalKeyword":"压滤机"},{"id":"df93aa23-3714-48be-8a3f-bd248314a02c","keyword":"综合回收","originalKeyword":"综合回收"},{"id":"88add864-a276-4f14-a2a5-2335dc553a55","keyword":"污水零排放","originalKeyword":"污水零排放"}],"language":"zh","publisherId":"huangj200309013","title":"全泥氰化炭浆提金工艺含氰尾矿处理技术改造与实践","volume":"24","year":"2003"},{"abstractinfo":"通过试样斜磨在扫描电镜下可清晰地直接观察到正常镀层的Fe-Al抑制层.研究结果表明,实际生产中导致粘附性不良的原因多种多样,但却都表现为镀层异常.NOF段空燃比(过剩空气系数)偏低时,带钢表面碳富集导致粘附性不良.NOF段板温与空燃比过高时,氧化严重导致还原段负荷过重,表面还原不良引发粘附性不良,此时,靠近基板的镀层处存在大量ZnO.镀锌层分层(镀层控制不良)导致粘附性不良,分层处为ZnO相.","authors":[{"authorName":"伍康勉","id":"265fb763-5ded-43dd-a7e3-5446e243a9dd","originalAuthorName":"伍康勉"},{"authorName":"成小军","id":"1d8f4883-833a-403d-988e-76dbe6f898e1","originalAuthorName":"成小军"},{"authorName":"国华","id":"1adabed0-7e7e-453b-bdbc-c99646cb352b","originalAuthorName":"焦国华"},{"authorName":"刘希林","id":"835e7759-e34c-4816-8830-0d77133a4205","originalAuthorName":"刘希林"},{"authorName":"李晓少","id":"f3e6e874-ea48-46cc-8c3f-24f6e18f6aef","originalAuthorName":"李晓少"}],"doi":"","fpage":"94","id":"a9dcceaa-4af2-406b-8490-739166d0bff1","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7ccb0989-981f-4925-818e-f87ec1c6573b","keyword":"热镀锌","originalKeyword":"热镀锌"},{"id":"ca2d46ee-e295-493d-b216-e8bf72833d56","keyword":"抑制层直接观察","originalKeyword":"抑制层直接观察"},{"id":"2ef640a9-2fd2-424a-9857-59b43d14fbe3","keyword":"粘附性不良","originalKeyword":"粘附性不良"},{"id":"9247f387-a236-4d26-b298-cab1db265a5f","keyword":"机制","originalKeyword":"机制"}],"language":"zh","publisherId":"gt201009020","title":"热镀锌镀层粘附性不良的机制研究","volume":"45","year":"2010"},{"abstractinfo":"为了抑制CSP热轧板卷边部裂纹,对CSP热轧板卷边部裂纹的成因进行了研究.CSP热轧板卷边部裂纹缺陷主要有3类:边部横裂纹、边部纵裂纹、边部烂边或掉块等.板卷产生边部裂纹的主要原因是:连铸坯表面边部横裂纹(包括深的振痕)和边部的细小纵裂纹,在加热和轧制过程中不断扩展;钢液在凝固以及铸坯在冷却、均热、轧制、层流冷却和卷取等过程中的热应力、机械应力以及相变应力等作用力超过钢的塑性变形抗力.抑制CSP热轧板卷产生边部裂纹的主要措施是:控制好合适的钢水成分;制定有效的工艺参数,如结晶器热流密度、结晶器振动参数、二冷冷却强度等.工业试验结果表明,CSP热轧板卷边部裂纹率由7.93%降低到1.81%.","authors":[{"authorName":"国华","id":"01b49790-85a8-4cf1-9ec5-9316af9f1991","originalAuthorName":"焦国华"},{"authorName":"吴光亮","id":"8dc217a2-78f5-4399-bdfe-e6b9a7cee4ff","originalAuthorName":"吴光亮"},{"authorName":"孙彦辉","id":"56963118-6ec8-4372-a90d-4f15abbacce5","originalAuthorName":"孙彦辉"},{"authorName":"成小军","id":"adbc7f14-af94-470c-b665-c1db662cd178","originalAuthorName":"成小军"},{"authorName":"周春泉","id":"065b62fd-af84-4971-b22e-3c111852f2df","originalAuthorName":"周春泉"}],"doi":"","fpage":"27","id":"e5fa166a-122e-413f-b1fd-cad927f924a9","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"37e1d03e-dd9e-4ee5-b623-057ceb6cb9f6","keyword":"热轧板卷","originalKeyword":"热轧板卷"},{"id":"4a284142-ebc0-41c4-a318-42091e637ada","keyword":"边部裂纹","originalKeyword":"边部裂纹"},{"id":"5f7a8644-4f4e-4aa5-a658-697d8dd9309b","keyword":"裂纹指数","originalKeyword":"裂纹指数"}],"language":"zh","publisherId":"gt200606007","title":"CSP热轧板卷边部裂纹成因及控制","volume":"41","year":"2006"},{"abstractinfo":"对薄板坯工艺和厚板坯工艺生产电工钢(包括低碳低硅、无取向和取向电工钢)的工艺特点、凝固组织、夹杂物析出特点、铸坯表面质量及其对电工钢性能的影响进行了比较与分析.同时,就上述两种工艺的成材率以及生产操作等方面也进行了简要的分析.从铸坯的内部质量、铸态组织、能量利用率与成材率方面来看,薄板坯工艺有明显的优势;从铸坯表面质量和生产品种的多样性等方面考虑,厚板坯工艺生产电工钢有其优越性.","authors":[{"authorName":"刘光穆","id":"d863c6e7-5e23-443c-b4cb-dffda3d6772e","originalAuthorName":"刘光穆"},{"authorName":"郑柏平","id":"9c743f17-f46e-4f83-9153-2d5f64412520","originalAuthorName":"郑柏平"},{"authorName":"国华","id":"1f1f5b0a-7c52-4af6-9ba4-b10c00246acd","originalAuthorName":"焦国华"}],"doi":"","fpage":"28","id":"13cf665f-b32b-4202-a4eb-4a55692ee33a","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6e68cb02-1c48-4b3c-aeda-e8019ac7aa2f","keyword":"薄板坯工艺","originalKeyword":"薄板坯工艺"},{"id":"006635aa-1e04-47a3-8c5a-bc8221029338","keyword":"厚板坯工艺","originalKeyword":"厚板坯工艺"},{"id":"ebfa187e-0538-4e53-b3d3-98b2a5aa12fa","keyword":"电工钢","originalKeyword":"电工钢"}],"language":"zh","publisherId":"gt200410007","title":"薄板坯与厚板坯生产电工钢的比较与分析","volume":"39","year":"2004"},{"abstractinfo":"对BOF-LF-CSP生产冷轧基板的主要强化因素进行了系统分析和控制.细晶强化是冷轧基板强化的主要表现形式,屈服强度的高低与晶粒的大小有明显的对应关系;通过对炼钢、精炼和连铸工艺的优化,钢水中平均w([Si])≤0.02%,w([N])≤30×10-6;控轧控冷的目的是控制动态再结晶和有利于晶粒长大,开轧温度、终轧温度和卷取温度是影响强度的3个重要轧制参数.采取相应措施后,冷轧基板的强度大幅降低.","authors":[{"authorName":"郑柏平","id":"e9aa39bb-7bcd-4984-93f7-842dee7dba7f","originalAuthorName":"郑柏平"},{"authorName":"国华","id":"327df808-7720-47c7-ad04-68cde5b87fcc","originalAuthorName":"焦国华"},{"authorName":"周春泉","id":"4db6367a-4f8b-415e-81ee-c9c66db78aac","originalAuthorName":"周春泉"}],"doi":"","fpage":"24","id":"44e77e31-93a5-404d-a0b0-1258825682ca","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5e6b48d3-8e47-4736-a422-a1fa24d09d49","keyword":"CSP","originalKeyword":"CSP"},{"id":"a6be8b56-0c9a-4b24-885f-5ae5d3528247","keyword":"强度","originalKeyword":"强度"},{"id":"949f3c51-3c87-4eb4-aa2c-38b1252f10de","keyword":"冷轧基板","originalKeyword":"冷轧基板"}],"language":"zh","publisherId":"gt200710006","title":"BOF-CSP线低强度冷轧基板的开发","volume":"42","year":"2007"}],"totalpage":74,"totalrecord":733}