{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"超介质(Metamaterials)是近年迅速发展起来的能够获得任意介电常数和磁导率进而调控电磁波传播的新颖介质.介绍了基于坐标变换的电磁隐身斗篷的基本理论,综述了超介质电磁隐身斗篷的研究进展,包括“封闭式”隐身斗篷、外隐身斗篷、隐身地毯等几种不同的隐身斗篷,这些隐身斗篷都具有良好的隐身效果,在隐身技术方面,尤其是在军事方面具有非常重要的应用价值.","authors":[{"authorName":"王战","id":"73a97191-e088-4b60-8d2c-ba38d1a80ae8","originalAuthorName":"王战"},{"authorName":"董建峰","id":"53bb2c52-0eb6-4356-8710-069c657ee130","originalAuthorName":"董建峰"}],"doi":"","fpage":"10","id":"967d2714-95ff-466a-bd41-de6d62e5455a","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"779a3787-0ade-45cf-8720-9d17485a52d3","keyword":"超介质","originalKeyword":"超介质"},{"id":"aae611bf-0f10-4a75-92c1-1d83ab9a2d4d","keyword":"隐身斗篷","originalKeyword":"隐身斗篷"},{"id":"44254f42-e99f-4ce0-b7f5-ed988f170f2f","keyword":"坐标变换","originalKeyword":"坐标变换"},{"id":"5697402c-0ba4-42bf-bb40-fe129aa41e70","keyword":"电磁散射","originalKeyword":"电磁散射"},{"id":"c1971583-ca13-4292-bfe5-82ffd29f2c81","keyword":"材料参数","originalKeyword":"材料参数"}],"language":"zh","publisherId":"cldb201217003","title":"超介质电磁隐身斗篷的研究进展","volume":"26","year":"2012"},{"abstractinfo":"平面手征超介质由于具有不对称传输的奇特性质而引起了人们极大的兴趣.简要介绍了平面手征超介质产生不对称传输的原理,并着重阐述了电磁波分别在微波段、光波段以及太赫兹波段的不对称传输性质与相应手征结构的模拟计算以及实验研究进展.这种不对称传输的超介质在微波、光子学器件中具有潜在的应用价值.","authors":[{"authorName":"刘道亚","id":"c408acb5-6471-4e49-861c-fe936de82671","originalAuthorName":"刘道亚"},{"authorName":"董建峰","id":"292ac0ad-3ef9-4cb1-bc07-ed6d52a37ac3","originalAuthorName":"董建峰"}],"doi":"","fpage":"117","id":"201accff-7bfc-4ad4-ab8c-453f9c6b9eaa","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2abadbb1-5614-4abd-90bf-64e83a36dfd5","keyword":"不对称传输","originalKeyword":"不对称传输"},{"id":"9a2890ca-367e-4baf-b06d-7bc69683d74e","keyword":"平面手征超介质","originalKeyword":"平面手征超介质"},{"id":"1e0e3c50-11df-49cc-976e-38eb58848176","keyword":"线极化波","originalKeyword":"线极化波"},{"id":"f0c73891-1be0-4127-a86e-fe111294877e","keyword":"圆极化波","originalKeyword":"圆极化波"}],"language":"zh","publisherId":"cldb201319024","title":"平面手征超介质不对称传输特性研究进展","volume":"27","year":"2013"},{"abstractinfo":"对介质球磨法制取超细碳化钨粉末进行了研究.实验探讨了不同线速度、磨球尺寸、分散剂的添加对初始粒径约1μm的碳化钨粉末的介质球磨工艺的影响.根据W=P·t,在保持能耗不变的情况下得到了粒度与线速度之间的关系,从而在一定粒度范围内选择最有效的线速度.同时,采取分阶段球磨的球磨效率要高于单一线速度球磨,可实现用更少的成本达到相同粒度.此外,球磨时添加羧甲基纤维素钠分散剂,粉末粒度越小时分散效果越明显,实验中在输出功率不变时,与不添加分散剂对比,其时间效率提高了13%,最终的粉末也呈现很好的分散性.最后,磨球尺寸的大小可决定最终粒度的大小.因此,根据目标粒度采用合适的磨球尺寸和球磨工艺才能达到最高的球磨效率.","authors":[{"authorName":"朱伟俊","id":"2acb3576-9e4f-458d-8224-d99cc64d0fd0","originalAuthorName":"朱伟俊"}],"doi":"","fpage":"54","id":"c7410859-1ddc-49e8-a8df-5b3ad3161637","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"4260ef13-f6de-4154-bec8-a91a5a24a308","keyword":"碳化钨粉","originalKeyword":"碳化钨粉"},{"id":"69d09e1a-c265-4dfc-8726-3d1fe2e0063c","keyword":"粒度分布","originalKeyword":"粒度分布"},{"id":"17a61d3b-16fd-4365-8b7a-bc0958a1443a","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"cb1a7640-4cbf-40c8-9d54-511e70da013d","keyword":"介质球磨","originalKeyword":"介质球磨"},{"id":"e760132f-902f-4177-bce5-a004cc628a50","keyword":"线速度","originalKeyword":"线速度"}],"language":"zh","publisherId":"clkfyyy201702010","title":"超细碳化钨介质球磨工艺的研究","volume":"32","year":"2017"},{"abstractinfo":"针对超细h-BN粉体易团聚、与有机基体界面相容性较差的缺点,研究了其在无水乙醇介质中的分散工艺.首先在测定其pH-Zeta电位的基础上,选取阴离子型(SA、OA、SDBS)、非离子型(PVP、KH570、司班85)和高分子型(PEG4000)分散剂进行超声分散研究.然后从以上几种分散剂中选取三种分散剂进行复合分散.实验发现:在最佳配比下,复合分散体系较单分散剂分散效果明显提升,PEG4000与SA的复合分散比最佳单分散剂的效果提升了18%;KH570与SA的复合分散体系比最佳单分散剂的效果提升了11%;推荐h-BN粉在无水乙醇中的分散工艺为:pH值为9时,在560 W的功率下用SA(4wt%)与PEG4000(1wt%)或者SA(1wt%)与KH570(4wt%)复合超声90 min.","authors":[{"authorName":"关云来","id":"4d75b9a2-4afd-419f-a5a5-4e643f032514","originalAuthorName":"关云来"},{"authorName":"张振忠","id":"786db64c-d442-4f3c-b4de-c5e96ac3f348","originalAuthorName":"张振忠"},{"authorName":"李振","id":"d415ae7d-1b01-436c-b4a5-8db2cd5472b3","originalAuthorName":"李振"},{"authorName":"赵芳霞","id":"dc68d778-2bd6-438f-b29b-4f10df42bdfa","originalAuthorName":"赵芳霞"}],"doi":"","fpage":"1154","id":"66063fb9-77f8-4370-a3f1-27ada8b2486b","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"62c2971c-01db-4633-809c-9dbc5d9e79d2","keyword":"超细h-BN粉","originalKeyword":"超细h-BN粉"},{"id":"6e7362f9-9386-404d-acf9-81be06c287be","keyword":"无水乙醇","originalKeyword":"无水乙醇"},{"id":"058fef8b-c5bd-4bb1-8f28-5a95b243299b","keyword":"pH-Zeta电位","originalKeyword":"pH-Zeta电位"},{"id":"3811c0b1-b432-432f-a45e-7f41d55066e4","keyword":"复合分散","originalKeyword":"复合分散"},{"id":"ceb7e6c3-d73f-4a80-a1e7-924662a443f2","keyword":"分散机理","originalKeyword":"分散机理"}],"language":"zh","publisherId":"gsytb201704009","title":"超细h-BN粉在无水乙醇介质中复合分散工艺研究","volume":"36","year":"2017"},{"abstractinfo":"针对超细铜锌粉在液体介质中团聚严重的现象,采用沉降法及分光光度法研究了该粉末的分散液在OP-10乳化剂、硬脂酸、碳酸钠等分散剂的作用下的分散效果.试验结果表明:分散剂的种类和浓度、分散温度及分散时间对超细铜锌粉分散液的分散能力有显著影响,分散剂的种类和浓度是影响本分散体系分散效果的主要参数.经过分析各因素对分散作用效果的影响,找到了不同分散剂的最佳作用条件,使超细铜锌粉的团聚得到了有效的控制,提高了其分散稳定性,为得到性质稳定的超细粉体提供了有效途径.","authors":[{"authorName":"刘毅辉","id":"618ac034-39f0-45ec-ac02-61c7930240e9","originalAuthorName":"刘毅辉"},{"authorName":"冯拉俊","id":"523f3fc9-1268-4ac1-a7b3-cec86b953329","originalAuthorName":"冯拉俊"}],"doi":"10.3969/j.issn.1001-3660.2006.06.008","fpage":"22","id":"0ca384cf-13ac-4929-b95d-2478c1a25af7","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"021b9dec-07c6-426b-afaf-afd11f7a2d64","keyword":"超细铜锌粉","originalKeyword":"超细铜锌粉"},{"id":"704ddd67-ed54-4a45-80b1-8037b47d69e5","keyword":"团聚","originalKeyword":"团聚"},{"id":"41bb8404-d4da-4c6c-9408-2fc3a5037c75","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"29f74cff-327f-4452-9167-bbef09995eca","keyword":"沉降法","originalKeyword":"沉降法"},{"id":"23572c7d-c16c-4ae0-af9f-df2b93facdac","keyword":"分光光度法","originalKeyword":"分光光度法"}],"language":"zh","publisherId":"bmjs200606008","title":"在水介质中分散剂对超细铜锌粉分散性的影响","volume":"35","year":"2006"},{"abstractinfo":"简单、经济、规模化制备二氧化钛( TiO2)光致超亲水表面备受重视.本研究利用硅氧烷溶胶为介质,将TiO2纳米颗粒浸涂到玻璃表面.考查了颗粒在表面的分散状况和TiO2含量对涂层光致超亲水性能、透明性以及涂层牢固度和表面硬度的影响.结果发现:浸涂并经紫外辐照1h或120℃烘干3h后,TiO2纳米颗粒能均匀、牢固地负载到玻璃表面;10 min UV辐照后,表面变得超亲水;涂层附着力达0级,表面硬度达到5H.硅氧烷溶胶对玻璃表面的良好浸润性和对含羟基纳米颗粒的良好“粘结”性能是纳米颗粒在玻璃表面能均匀、牢固负载的主要原因.研究结果为大规模、低成本制备透明自清洁表面提供了理论和实验基础.","authors":[{"authorName":"姚俊玲","id":"cd01bee6-0757-42c2-8d33-1c8655147486","originalAuthorName":"姚俊玲"},{"authorName":"冯杰","id":"2eaa36fe-340b-4933-8580-75e0360b1986","originalAuthorName":"冯杰"},{"authorName":"钱欣","id":"d8d35d03-c912-4607-b5d5-c2e024064464","originalAuthorName":"钱欣"}],"doi":"10.3969/j.issn.0253-4312.2011.10.013","fpage":"58","id":"1ed622f0-0c07-42f4-b9f2-9c28d9ff0a76","issue":"10","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"f6bc6412-ac50-4207-ac52-9cc9ad946759","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"b33e2c2f-9e34-4ed6-badd-6fe2f84d9285","keyword":"3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)","originalKeyword":"3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)"},{"id":"a98d605b-81e7-49f5-86f5-6bb54bc58d1d","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"e317cabf-b5ea-418f-b9f6-a034215f29ce","keyword":"超亲水","originalKeyword":"超亲水"}],"language":"zh","publisherId":"tlgy201110013","title":"以硅氧烷溶胶为介质制备纳米TiO2光致超亲水涂层","volume":"41","year":"2011"},{"abstractinfo":"通过测定20nm、200nm、500nm和5μmCeO2粉体在醇水混合介质中的粒度分布、表面电性及分散稳定性,研究了不同粒径级别超细CeO2粉体在体积比为1∶1的醇水系悬浮液中的超声分散行为。实验结果表明:在一定超声功率和超声频率下,不同粒径级别醇水系CeO2悬浮液均存在最佳超声时间。不同粒径级别醇水系CeO2悬浮液的表面电性各不相同;纳米级和亚微米级CeO2在醇水中所带Zeta电位为正值,微米级CeO2的Zeta电位为负值,悬浮液中CeO2粉体的平均粒度越大,其电位绝对值越小。不同粒径级别醇水系CeO2悬浮液的分散稳定性能各不相同;从超声结束后的分散效果来看,亚微米CeO2粉体在醇水混合介质中的分散性能最好;从多个沉降时间段内的稳定性来看,纳米CeO2粉体在醇水混合介质中的稳定性能最好。","authors":[{"authorName":"柳振平","id":"238237fe-b89d-48bf-afd8-c12ab8cd2e87","originalAuthorName":"柳振平"},{"authorName":"黎向锋","id":"427e9f1e-1072-44f0-bd13-391f2bb51a08","originalAuthorName":"黎向锋"},{"authorName":"左敦稳","id":"5d43ad91-d1ad-44aa-8c57-b3caac09b755","originalAuthorName":"左敦稳"},{"authorName":"王宏宇","id":"c25e0244-e786-4892-8680-1837fa433cbf","originalAuthorName":"王宏宇"},{"authorName":"孙玉利","id":"a23b52b7-0024-42cd-9762-a5cb2e0a5529","originalAuthorName":"孙玉利"},{"authorName":"江世好","id":"e48ab0f1-db39-442a-96d6-d985cad7b3df","originalAuthorName":"江世好"}],"doi":"","fpage":"732","id":"818e1387-f7d7-4520-84f4-37338d0136ce","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"2a4cfc24-beb3-4eac-9b90-3d0f4ef32a85","keyword":"超细CeO2","originalKeyword":"超细CeO2"},{"id":"99c2b404-a8e1-47b8-944d-6003d0098c72","keyword":"醇水系","originalKeyword":"醇水系"},{"id":"a178940a-735e-4fba-8501-d11d52e3d8b4","keyword":"超声波分散","originalKeyword":"超声波分散"},{"id":"6563d8fb-4d33-4ac0-9095-cb64e38da829","keyword":"分散稳定性能","originalKeyword":"分散稳定性能"}],"language":"zh","publisherId":"clkxygc201205019","title":"超细CeO2粉体在醇水混合介质中的超声分散行为","volume":"30","year":"2012"},{"abstractinfo":"研究了超细纳米晶软磁FeCuNbSiB粉体在水、无水乙醇、环氧树脂中的超声波分散工艺.结果表明:采用频率80kHz、功率4 kW的超声波,在水溶液中最佳分散剂为2%油酸钠或1%水基特种分散剂,在无水乙醇溶液中,含量为2%的KH550分散体系的超声波分散效果最好;当超声波分散时间小于90 min时,超声波处理时间越长,磁粉体在水溶液和无水乙醇溶液中的分散效果越好.当水基特种分散剂的体积分数为1%时,利用高能球磨工艺先分散60 min后,再超声波分散90 min,取得最好的分散效果,磁粉体的平均粒径达最小值5.7μm;当分散剂KH550的体积分数为2%,分散时间90 min时,粒子在无水乙醇中平均粒径达到最小值5.6 μm;在环氧树脂中分散时,含量为1%的KH550分散剂的分散效果最好,当分散时间90 min时,粉体的平均粒径达到最小值7.5μm.","authors":[{"authorName":"朱正吼","id":"7bc1d7b3-cdc6-484e-b520-321f30990b92","originalAuthorName":"朱正吼"},{"authorName":"宋晖","id":"a18cb2a6-062d-4dc5-8e40-9573cedf2438","originalAuthorName":"宋晖"},{"authorName":"胡伟","id":"ea3e4048-2ea0-4e0d-a15a-c735e529994c","originalAuthorName":"胡伟"}],"doi":"10.3969/j.issn.1004-244X.2006.03.012","fpage":"41","id":"1f7a1c75-000b-46d6-949d-33fabaa7c1f7","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"397ed87c-89da-4005-a280-bdaf9d0c9e5f","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"afc22f15-8b66-4b89-bee9-6c395c78d1b6","keyword":"软磁超细粉体","originalKeyword":"软磁超细粉体"},{"id":"7af95779-3bca-46fe-9420-7e96cbe10081","keyword":"分散","originalKeyword":"分散"},{"id":"7ca65037-fa2a-404a-baf0-6bb15220a784","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"b3884021-8cec-45ff-a5af-75bf724e0934","keyword":"超声波","originalKeyword":"超声波"}],"language":"zh","publisherId":"bqclkxygc200603012","title":"超细软磁粉体在介质中超声波分散工艺","volume":"29","year":"2006"},{"abstractinfo":"本文应用阳极极化曲线、XPS、AES和EDX等手段研究了不同Mo含量的26Cr超纯铁素体不锈钢在中性含Cl~-介质中的抗点蚀行为。结果表明合金元素Mo的加人可以进一步改善26Cr超纯铁素体不锈钢的抗点蚀能力。","authors":[{"authorName":"张恒华","id":"2be6a250-a7c4-4195-887b-823de2fe7370","originalAuthorName":"张恒华"},{"authorName":"王德英","id":"a6c08bcd-18f3-4423-a8dd-959148705e68","originalAuthorName":"王德英"},{"authorName":"周建辉","id":"2fbeaa41-b07f-4a35-ab76-4c8431d5e759","originalAuthorName":"周建辉"},{"authorName":"徐有容","id":"3208ce1a-0f08-4de6-9659-549e00fb1801","originalAuthorName":"徐有容"}],"categoryName":"|","doi":"","fpage":"163","id":"49998c2b-d33c-423e-93f4-1d5c9e743812","issue":"3","journal":{"abbrevTitle":"FSKXYFHJS","coverImgSrc":"journal/img/cover/FSKXYFHJS.jpg","id":"24","issnPpub":"1002-6495","publisherId":"FSKXYFHJS","title":"腐蚀科学与防护技术"},"keywords":[{"id":"a66f9825-7969-4ff4-ae95-0e8070ae9b62","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"c6189c41-3af8-453a-8f75-bd7664096d0f","keyword":"passive film","originalKeyword":"passive film"},{"id":"8944c875-e20f-4929-a25b-b8e4847bc6ad","keyword":"pitting corrosion","originalKeyword":"pitting corrosion"}],"language":"zh","publisherId":"1002-6495_1993_3_4","title":"钼对超纯铁素体不锈钢在中性氯介质中抗点蚀性能的影响","volume":"5","year":"1993"},{"abstractinfo":"采用无机包覆方法改善二氧化钛在水中的分散性.实验中引入表面活性剂(NaPO3)6对不同的无机包覆剂进行了对比(Al2O3,SiO2),通过改变二氧化钛与无机包覆剂的质量百分比、反应pH值、反应温度等条件研究了超微二氧化钛在水介质中的分散性,得出结论如下:以(NaPO3)6作为表面活性剂,二氧化钛与二氧化硅的质量百分比为100:1,反应环境的pH值为10,反应温度80℃,反应时间1h,超微一氧化钛在水介质中的分散性及其稳定性良好.","authors":[{"authorName":"冉璟","id":"c27c9a83-b604-432e-8d47-27b7fd000253","originalAuthorName":"冉璟"},{"authorName":"张萍","id":"a7b6d2d9-6b48-4ae1-9da2-fa031ecd8580","originalAuthorName":"张萍"},{"authorName":"李哲","id":"f6252d10-f16f-4a2a-ab67-85d0666fcc5b","originalAuthorName":"李哲"}],"doi":"","fpage":"344","id":"24e18853-4df7-4aee-9f36-962960b99d9b","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"40b659c9-62e5-4d6e-95cd-2b665d99c440","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"7672d3f2-e2f4-4cfa-b7e6-b8945f454c3d","keyword":"分散性","originalKeyword":"分散性"},{"id":"a6f2f39d-afca-40cf-ac05-9dc446fa3d1b","keyword":"无机包覆","originalKeyword":"无机包覆"}],"language":"zh","publisherId":"cldb2005z1112","title":"无机包覆对超微二氧化钛在水介质中分散性的改善","volume":"19","year":"2005"}],"totalpage":1166,"totalrecord":11656}