{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"运用粒子结构设计原理,合成了核壳型自交联聚丙烯酸酯乳液,并对其成膜性能进行了考察,探讨了温度、乳化剂及胶乳结构对成膜性能的影响,研究表明,成膜温度、乳化剂、胶乳结构,包括核壳比例,交联单体比例都对成膜的性能有直接的影响.成膜的最佳条件是成膜温度在80℃,乳化荆用量为4%(质量分数),核壳比1:l,交联单体的用量10%为(质量分数).","authors":[{"authorName":"张光华","id":"e947e166-3677-4d13-8c45-a04dd832906f","originalAuthorName":"张光华"},{"authorName":"王义伟","id":"31ed0201-c52a-46d9-b692-85621ae7c4a6","originalAuthorName":"王义伟"},{"authorName":"","id":"b6554477-1562-471e-a996-a85fa265e2e6","originalAuthorName":"朱军峰"},{"authorName":"崔萌","id":"65382297-d095-45f8-ac32-0a826d5e4e20","originalAuthorName":"崔萌"}],"doi":"","fpage":"71","id":"089e94af-36fa-4b30-ba59-698f02636611","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2d03f658-4490-45d2-855e-3ec0c144ae7a","keyword":"核壳乳液","originalKeyword":"核壳乳液"},{"id":"d5a0a0d7-b612-4bc2-abae-9542f26b89c3","keyword":"自交联","originalKeyword":"自交联"},{"id":"80573f20-4c53-4fed-9784-402db42771ee","keyword":"丙烯酸酯","originalKeyword":"丙烯酸酯"},{"id":"284e4693-f858-4fe9-b430-352c1b2513e5","keyword":"成膜性能","originalKeyword":"成膜性能"}],"language":"zh","publisherId":"gfzclkxygc200901020","title":"核壳型自交联聚丙烯酸酯乳液的成膜性能","volume":"25","year":"2009"},{"abstractinfo":"制备了水合氧化镧(LaH)并将水合氧化镧负载于氨基磷酸树脂(APAR)上制得杂化吸附剂LaH-APAR,用红外光谱(FT-IR)、热重(TGA)对LaH-APAR的结构和热学性能进行了测试,并研究了pH值、温度对LaH及LaH-APAR吸附氟离子性能的影响。结果表明,La3+与APAR以配位键结合,LaH-APAR吸附剂在300℃以下比较稳定,它与LaH吸附性能基本相同,受pH值影响不大,可以在较宽的pH范围内使用;在pH不变的情况下,LaH-APAR随着温度的升高吸附速率也相应提高,属于温度控制吸附,且为化学吸附。","authors":[{"authorName":"","id":"d3ba1942-3ba6-4b7c-84e3-1f4195cac589","originalAuthorName":"朱军峰"},{"authorName":"张光华","id":"f4ca851f-a831-4ca8-920f-ff1d2b60ddf1","originalAuthorName":"张光华"},{"authorName":"董惟昕","id":"cf235383-b095-4d25-83eb-dcd971929f93","originalAuthorName":"董惟昕"},{"authorName":"王光辉","id":"49798985-2c0c-4e2d-b759-7f4b0433bb66","originalAuthorName":"王光辉"}],"doi":"","fpage":"139","id":"1d20175b-12ff-4785-ae0c-be87e1c26465","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"77b8140b-f226-498c-8621-9d8e248fdb6b","keyword":"水合氧化镧","originalKeyword":"水合氧化镧"},{"id":"2c4e2a62-dd25-4627-b587-deeb449a242e","keyword":"氨基磷酸树脂","originalKeyword":"氨基磷酸树脂"},{"id":"7ae405fd-8f33-4b80-b3e2-568c29e0b9a0","keyword":"氟离子","originalKeyword":"氟离子"},{"id":"5ec93a74-fbb1-4fae-a31f-8b846af66037","keyword":"杂化吸附剂","originalKeyword":"杂化吸附剂"}],"language":"zh","publisherId":"gfzclkxygc201201050","title":"氨基磷酸树脂负载镧化合物杂化吸附剂的制备与性能","volume":"28","year":"2012"},{"abstractinfo":"以烯丙基聚乙二醇(APEG),甲基丙烯酸(MAA),烯丙基磺酸钠(SAS)为单体,在引发剂过硫酸钾(K2S2O8)、阻聚剂对苯二酚作用下直接聚合得到一系列具不同侧链长度的三元聚醚聚羧酸盐分散剂.通过红外光谱、热重分析、差示扫描量热分析和凝胶渗透色谱等手段对聚合物的结构、热力学性能和相对分子质量及其分布进行了表征和分析.将其作用于彬长煤制浆,考察了浆体的表观黏度、流变性、Zeta电位、最大成浆浓度和稳定性,并测定和煤的接触角.结果表明,侧链长度为SAS/MAA/APEG1000(n=23)的聚羧酸盐分散剂在最佳用量为0.4%时,水煤浆最高制浆浓度可达到72%,Zeta电位由-12.6 mV变化到-53.1 mV,具有良好的润湿效果,对彬长煤具有更好的降粘、分散和稳定作用.","authors":[{"authorName":"张光华","id":"0f8548d6-e21b-4ae7-aae1-b9a283e08a65","originalAuthorName":"张光华"},{"authorName":"屈倩倩","id":"1c8d5978-603b-40a3-88fc-7bc663f33264","originalAuthorName":"屈倩倩"},{"authorName":"","id":"0691c2af-2344-4a37-94c4-ab92897a5b66","originalAuthorName":"朱军峰"},{"authorName":"卫颖菲","id":"179121c1-35f4-418d-8283-34f7a7835f27","originalAuthorName":"卫颖菲"},{"authorName":"王鹏","id":"1d4ff6ea-b46d-47e0-b86d-dd70ff3e43f9","originalAuthorName":"王鹏"},{"authorName":"付小龙","id":"00ee5d7f-4330-415e-a1e2-3e82e8f1529e","originalAuthorName":"付小龙"}],"doi":"","fpage":"143","id":"797cf122-3c9f-405e-8079-315e44fe41e4","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8feea3f8-bde0-4ba5-807c-da16ecbd4d91","keyword":"聚羧酸盐","originalKeyword":"聚羧酸盐"},{"id":"b0c4ac47-74ea-4294-bc6e-70c79840d12b","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"5b8cdf4c-e21c-4589-b868-5a33a25bd095","keyword":"烯丙基聚乙二醇","originalKeyword":"烯丙基聚乙二醇"},{"id":"d791af39-655a-45dd-a90d-e9d31b0839d7","keyword":"侧链长度","originalKeyword":"侧链长度"}],"language":"zh","publisherId":"gfzclkxygc201404030","title":"聚羧酸盐SAS/MAA/APEG的制备与性能分析","volume":"30","year":"2014"},{"abstractinfo":"以丙烯酸(AA)和4种不同侧链长度的聚乙二醇单甲醚(MPEG 相对分子质量分别为350,500,750,1000)先酯化合成大单体(MPEGAA),再以丙烯酸、对苯乙烯磺酸钠(SSS)为单体,在引发剂过硫酸钾、链转移剂异丙醇作用下聚合得到4种具有不同侧链长度的聚羧酸盐分散剂.通过红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、凝胶渗透色谱(GPC)、热重分析(TG)和差示扫描量热分析(DSC)对聚合物的分子结构、相对分子质量及其热力学性能进行了表征和分析.将其作用于彬长煤制浆,考察了浆体的表观黏度、最佳添加用量、最大成浆浓度、Zeta电位和稳定性.结果表明侧链长度为 PC500(n=11)的聚羧酸盐分散剂降黏效果最佳,且最佳用量0.4%(质量分数)时,水煤浆最高制浆浓度可达到68%,Zeta 电位由-11.2 mV变化到-41.5 mV,对彬长煤具有更好的分散降黏和稳定的作用.","authors":[{"authorName":"张光华","id":"3dc19c17-b200-484e-af07-d5c6afde66b0","originalAuthorName":"张光华"},{"authorName":"李元博","id":"6e31bfc3-5051-41ec-9347-868e8dcdd12a","originalAuthorName":"李元博"},{"authorName":"","id":"d3d82d45-f9a2-454e-b7b6-865ba76859fd","originalAuthorName":"朱军峰"},{"authorName":"贾宇荣","id":"752fc26e-88e2-4813-8b15-ababe6426f1e","originalAuthorName":"贾宇荣"},{"authorName":"葛磊","id":"7f6dfc9b-86a1-49b5-9e2a-5da374ff45fb","originalAuthorName":"葛磊"}],"doi":"10.3969/j.issn.1001-9731.2015.10.021","fpage":"10104","id":"f2e9a1e6-48a7-40ee-9a94-9116f0676ccc","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1b458625-c42f-49f8-a56c-5cf3cb2dcbc3","keyword":"聚羧酸盐","originalKeyword":"聚羧酸盐"},{"id":"9db981a9-806d-43a5-881a-fa72dc5c8d8e","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"22d59451-9147-4b4d-86c6-844bf42f46a4","keyword":"结构表征","originalKeyword":"结构表征"},{"id":"305a0b4f-18d6-43af-a365-32dd46ef927f","keyword":"侧链长度","originalKeyword":"侧链长度"}],"language":"zh","publisherId":"gncl201510021","title":"长侧链聚羧酸盐SSS/AA/MPEGAA的制备及其性能研究?","volume":"","year":"2015"},{"abstractinfo":"以冰醋酸和醋酸酐为改性剂,浓硫酸作催化剂,合成了玉米淀粉醋酸酯,用傅立叶红外(FT-IR)、扫描电镜(SEM)、差示扫描量热法(DSC)、X射线衍射(XRD)分别对淀粉醋酸酯的结构、形貌、玻璃化转变温度和结晶度等进行测试和表征,分析了不同酯化度对淀粉的微观结构和热性能的影响.结果表明,淀粉经酯化后,结晶度降低,热性能提高,制备的酯化淀粉/聚乙烯醇的复合膜具有较好的力学性能和疏水性.","authors":[{"authorName":"张光华","id":"d133d0cc-eec4-4b13-84a3-cb9caffef6bb","originalAuthorName":"张光华"},{"authorName":"","id":"bdf9f559-93a3-40d3-9471-daa82682d32f","originalAuthorName":"朱军峰"},{"authorName":"王卓妮","id":"368bd54c-7501-4f2c-b1dd-3a027ffbdb3b","originalAuthorName":"王卓妮"},{"authorName":"李俊国","id":"1efbd10f-b718-4045-b60f-0531ba3e96e3","originalAuthorName":"李俊国"}],"doi":"","fpage":"223","id":"f8e4879a-bdc5-4afc-8ae4-789a08078059","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1ec5512a-1f0c-4bba-ba2c-97d07dccf8cb","keyword":"酯化度","originalKeyword":"酯化度"},{"id":"4d0bf35f-cae5-4426-856c-c123138f8df4","keyword":"淀粉醋酸酯","originalKeyword":"淀粉醋酸酯"},{"id":"9ac0bc92-d62a-4827-ac0e-70f8a1114625","keyword":"玻璃化转变温度","originalKeyword":"玻璃化转变温度"},{"id":"4d5c52be-cac3-4d4b-bec3-b6336a70033a","keyword":"结晶度","originalKeyword":"结晶度"}],"language":"zh","publisherId":"gfzclkxygc200604057","title":"玉米淀粉醋酸酯的制备及成膜性能","volume":"22","year":"2006"},{"abstractinfo":"分别用干法和湿法制备了羧甲基-β-环糊精(CM-β-CD).用傅立叶红外吸收光谱仪(FTIR)进行了表征.测定了CM-β-CD溶解度和取代度,计算了反应效率和产率.结果表明,干法合成工艺反应效率在37%~46%之间,产率在83%左右,均高于湿法工艺,且操作简单,成本低廉.干法合成的较佳工艺为:氯乙酸(CA)与β-环糊精(β-CD)的摩尔比为6,在40℃反应4h.","authors":[{"authorName":"","id":"e8b8c6e9-09b2-45ee-8fca-58f81145d98b","originalAuthorName":"朱军峰"},{"authorName":"张光华","id":"d5b02920-3b54-42a4-af22-1095b1006707","originalAuthorName":"张光华"},{"authorName":"李楠","id":"4cc4e9a7-49ad-46a2-83f3-79119b77b026","originalAuthorName":"李楠"},{"authorName":"高建才","id":"5b6cf92b-db59-4e13-9c6e-d579d4732882","originalAuthorName":"高建才"}],"doi":"10.3969/j.issn.1000-0518.2008.06.013","fpage":"681","id":"bac91bd1-de59-4312-ae14-84c5eaa82282","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"19fa9bd9-ce1b-426b-847a-8f2b3162f0bb","keyword":"羧甲基-β-环糊精","originalKeyword":"羧甲基-β-环糊精"},{"id":"57a4a584-3ac4-460e-8d83-9f026aa285e0","keyword":"干法","originalKeyword":"干法"},{"id":"b400c6fb-85da-43a4-b24a-485921d09fa3","keyword":"湿法","originalKeyword":"湿法"},{"id":"ceefd6d8-cdb5-41e0-90f3-2e6da36d5ee5","keyword":"取代度","originalKeyword":"取代度"}],"language":"zh","publisherId":"yyhx200806013","title":"羧甲基-β-环糊精的干法制备","volume":"25","year":"2008"},{"abstractinfo":"以甲基丙烯酸(MAA)、烯丙基磺酸钠(SAS)按一定比例合成了5种含有不同—COO-1/—SO3-1比值的聚羧酸盐水煤浆分散剂PMAS系列.并通过红外光谱(FT-IR)、凝胶渗透色谱(GPC)进行了表征.并将其作用于彬长煤制浆,在用量0.4%(质量分数)时,水煤浆浆浓为65%时,考察了浆体的表观黏度与—COO-1/—SO3-1比值的关系,在不同浓度下的zeta电位以及pH值对水煤浆应用的影响等.结果表明,当—COO-1 /—SO3-1比值为约3.238时,浆体的表观粘度最低,稳定性理想,此时浆体的zeta电位能达到-38 mV,水煤浆粘度随着pH值的增大逐渐降低,当pH值大于10时水煤浆粘度趋于稳定.","authors":[{"authorName":"王睿","id":"61c21545-fae4-4333-ab34-a1a4a293adb2","originalAuthorName":"王睿"},{"authorName":"张光华","id":"01d695c6-d807-4c1e-aacc-dd8c641f26ed","originalAuthorName":"张光华"},{"authorName":"","id":"8688d3c1-2ebd-4d4a-9441-5e7db21a101c","originalAuthorName":"朱军峰"},{"authorName":"何志琴","id":"668a98e9-ab3b-4e5b-a6b5-a4dcaa1fcc3d","originalAuthorName":"何志琴"}],"doi":"10.3969/j.issn.1001-9731.2016.03.021","fpage":"3115","id":"37aa11ad-6740-4a86-ae4b-1b15bd19142d","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e6f5eb96-f4b1-47a2-9bd9-f54cd002b2d8","keyword":"聚羧酸盐","originalKeyword":"聚羧酸盐"},{"id":"dc72e83b-0ab5-486a-a2ca-34260479de79","keyword":"分散","originalKeyword":"分散"},{"id":"51b2acb5-8431-484d-b76e-272cfd8f7bb9","keyword":"羧基","originalKeyword":"羧基"},{"id":"0f1d879e-da33-40ee-bfce-2e7fe121e53a","keyword":"磺酸基","originalKeyword":"磺酸基"},{"id":"8adb87bf-7e1b-4b74-b4b4-d1f830b44bbc","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"gncl201603021","title":"羧基/磺酸基含量对聚羧酸盐水煤浆分散剂性能的影响","volume":"47","year":"2016"},{"abstractinfo":"以甲氧基聚乙二醇(MPEG,氧乙烯单元数为11,23)和甲基丙烯酸(MAA)为原料制得甲氧基聚乙二醇甲基丙烯酸酯化单体(MAAMPEG);再以该酯化单体、甲基丙烯酸和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,制得具有不同长度侧链的梳形聚羧酸盐(PC)分散剂AMPS / MAA /MAAMPEG(AMAPEG).利用核磁共振氢谱(1H-NMR)、红外光谱仪(FT-IR)、凝胶渗透色谱仪(GPC)对分散剂分子的结构、分子质量及分布进行了表征;并将其和工业分散剂萘磺酸盐(NSF)用于彬长煤制水煤浆,结果表明,所得目标聚合物的Mw为2×104~3×104,分子量分散系数D在约为1.3,煤质量浓度为65%时,最佳用量为0.4%,浆体粘度约为447 mPa·s,zeta电位达到-56 mV,比萘磺酸盐具有良好的润湿效果,更好的降粘分散和稳定作用.","authors":[{"authorName":"","id":"73fff8d2-c1eb-44c7-a921-38d68e5ceabe","originalAuthorName":"朱军峰"},{"authorName":"王佩","id":"ea23a238-4345-4088-a2d3-2acb7753be6d","originalAuthorName":"王佩"},{"authorName":"张光华","id":"a8d45d39-ff6e-4fcb-9390-eeec3fd7250f","originalAuthorName":"张光华"},{"authorName":"李俊国","id":"e64f3b2e-3cb5-4062-8879-5fa4273c281b","originalAuthorName":"李俊国"}],"doi":"10.3969/j.issn.1001-9731.2017.05.038","fpage":"5205","id":"e64a0242-1764-43e0-998c-96c63642eda9","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2e5cfe25-01f1-4553-8a4d-72ab5573a8d0","keyword":"聚羧酸盐","originalKeyword":"聚羧酸盐"},{"id":"de253f12-7770-4638-89c5-f4487eedfde5","keyword":"2-丙烯酰胺-2-甲基丙磺酸","originalKeyword":"2-丙烯酰胺-2-甲基丙磺酸"},{"id":"eb783b06-e28d-453a-ae2d-20021e85cbba","keyword":"甲氧基聚乙二醇","originalKeyword":"甲氧基聚乙二醇"},{"id":"7cb3a8f1-e5b6-4875-a9bd-d35d3705f96c","keyword":"水煤浆","originalKeyword":"水煤浆"},{"id":"f30b5040-e74d-4bbe-98bd-fdfb2d361488","keyword":"分散剂","originalKeyword":"分散剂"}],"language":"zh","publisherId":"gncl201705038","title":"梳形聚羧酸盐AMPS/MAA/MAAMPEG的制备与性能研究","volume":"48","year":"2017"},{"abstractinfo":"以浓硫酸作催化剂,玉米淀粉为原料,冰醋酸和醋酸酐为改性剂,合成了不同取代度的玉米淀粉醋酸酯. 用傅立叶红外(FTIR)、扫描电镜(SEM)、差示扫描量热(DSC)、热失重(TGA)和X射线衍射(XRD)测试技术对淀粉醋酸酯的结构、形貌、熔融温度、分解温度和结晶度进行表征,分析了不同取代度对醋酸酯淀粉的热性能及其结晶结构的影响. 浓硫酸代替甲磺酸作催化剂制备醋酸酯淀粉的最佳反应条件为反应温度75~80 ℃,反应时间3 h,0.38 mL H2SO4 作催化剂;随着醋酸酯淀粉取代度的提高,其结晶度从37.95%降至0,分解温度Td从327.32 ℃提高至381.35 ℃.","authors":[{"authorName":"","id":"8871ffb8-a2ad-4c6f-9263-7ed0ba2ef43c","originalAuthorName":"朱军峰"},{"authorName":"张光华","id":"50e4dc72-b9a3-4dc5-a623-782291ff62f3","originalAuthorName":"张光华"},{"authorName":"李俊国","id":"1adaf62b-0a40-4c6e-8c3f-2a2cee480a71","originalAuthorName":"李俊国"}],"doi":"10.3969/j.issn.1000-0518.2006.09.016","fpage":"1010","id":"a97d547d-d2be-4b97-9182-df85883e51d0","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"6c70254d-c1da-4965-aa3f-54c3e744f07e","keyword":"取代度","originalKeyword":"取代度"},{"id":"ffd96684-1e8d-4777-b174-7a864c153324","keyword":"醋酸酯淀粉","originalKeyword":"醋酸酯淀粉"},{"id":"a72a74ab-a297-46b5-8d4d-981340b649b4","keyword":"玻璃化转变温度","originalKeyword":"玻璃化转变温度"},{"id":"bc81fbc5-ecb9-4dc1-9680-6cab97d7127f","keyword":"结晶度","originalKeyword":"结晶度"}],"language":"zh","publisherId":"yyhx200609016","title":"高取代度玉米醋酸酯淀粉的制备与表征","volume":"23","year":"2006"},{"abstractinfo":"介绍由常规五酸草绿色钝化工艺改良的,以重铬酸钾为体系的镀锌绿色钝化工艺.","authors":[{"authorName":"奚兵","id":"d30c6c88-07a9-4e6e-af44-2c375b8e90b9","originalAuthorName":"奚兵"}],"doi":"10.3969/j.issn.1005-748X.2004.09.016","fpage":"414","id":"cc7eaf66-167b-4803-9d57-67270cc9a5ad","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"e3c595f9-21b8-4923-8ae3-f792ba18b497","keyword":"镀锌层","originalKeyword":"镀锌层"},{"id":"f77f39f6-b5ef-41d8-a711-7ac5e012b3d9","keyword":"绿色钝化","originalKeyword":"军绿色钝化"},{"id":"13934250-e5bb-402b-9e7b-e423b23f73ac","keyword":"工艺配方","originalKeyword":"工艺配方"}],"language":"zh","publisherId":"fsyfh200409016","title":"镀锌层绿色钝化","volume":"25","year":"2004"}],"totalpage":655,"totalrecord":6546}