{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过X射线衍射及测量手段研究了Nd2AlFe12Mn4化合物的热膨胀性质及伸缩性质.研究结果表明Nd2AlFe12Mn4化合物在103~654K的温度范围内具有菱方相的Th2Zn17型结构.在183~244K的温度范围内具有负热膨胀性质,其平均热膨胀系数α=-9.01×10-5/K.对本伸缩的研究结果表明Nd2AlFe12Mn4化合物中存在着较强的各向异性的伸缩,103K时其伸缩约为9.3×10-3.测量研究结果表明Nd2AlFe12Mn4化合物的居里温度约为210K,比其母合金Nd2AlFe16低约260K,分析认为这是3d次晶格中Mn磁矩与Fe磁矩反铁耦合的结果.","authors":[{"authorName":"高艳","id":"ba8fa371-8d25-4f75-bd20-5d0e96d3ee35","originalAuthorName":"高艳"},{"authorName":"赵淼","id":"0b4fec5a-ffa1-4067-9e7d-66176ab8f19d","originalAuthorName":"赵淼"},{"authorName":"周严","id":"6a9d27ac-3487-4423-95c7-45b65441cc39","originalAuthorName":"周严"}],"doi":"","fpage":"1679","id":"ac3ac0c8-e147-409c-9c2d-ced720a7e876","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0006c535-508b-4e57-9e6a-75e669942d52","keyword":"Nd2AlFe12Mn4化合物","originalKeyword":"Nd2AlFe12Mn4化合物"},{"id":"a73ed430-063e-47c8-ad5f-798970e6da09","keyword":"负热膨胀","originalKeyword":"负热膨胀"},{"id":"f01b939b-df13-4d9e-8a7d-ffdb75c8b788","keyword":"伸缩","originalKeyword":"本征磁致伸缩"}],"language":"zh","publisherId":"gncl200511010","title":"Nd2AlFe12Mn4化合物的伸缩","volume":"36","year":"2005"},{"abstractinfo":"根据德拜理论和格律乃森关系导出的R2Fe17(R=Y,Tm)化合物在顺态的晶胞参数(a,c,v)及由负膨胀测定法得到的R2Fe17(R=Y,Tm)化合物的晶胞参数的差别,计算了R2Fe17(R=Y,Tm)化合物的伸缩随温度的变化关系.计算结果表明R2Fe17(R=Y,Tm)化合物的伸缩随着温度的增加而急剧减小.分析表明这种现象与磁化强度和交换耦合作用随温度的下降有关.本文还研究了重稀土原子磁性对R2Fe17化合物的伸缩的影响,结果表明重稀土原子磁矩及R-T交换耦合作用使R2Fe17化合物的伸缩增强,但增强的幅度比3d次晶格引起的伸缩小一个数量级,亦即R2Fe17化合物的伸缩主要来源于3d次晶格中的Fe-Fe交换作用.","authors":[{"authorName":"郝延明","id":"4e8f2b46-8ec2-4bbf-81b5-a9a3b3878915","originalAuthorName":"郝延明"},{"authorName":"刘倩","id":"449b9cf9-4793-472a-938d-e8e68266846f","originalAuthorName":"刘倩"},{"authorName":"周严","id":"40b8789d-09d4-4003-b7f3-d5b1d98b56c9","originalAuthorName":"周严"},{"authorName":"付维贵","id":"de3c7c83-478c-41de-9dbf-7d11975ea6ac","originalAuthorName":"付维贵"},{"authorName":"赵淼","id":"eaa0ee6e-7f5c-47d2-bc57-8884679d9e85","originalAuthorName":"赵淼"}],"doi":"","fpage":"700","id":"18b42aea-f676-45d6-92c4-18669ba4f7c7","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e0975d56-243c-426e-b581-0dc23c25f306","keyword":"R2Fe17(R=Y","originalKeyword":"R2Fe17(R=Y"},{"id":"92c31c6e-f845-42d1-956e-efa117659bc7","keyword":"Tm)化合物","originalKeyword":"Tm)化合物"},{"id":"9edc3785-84d8-46a8-acc7-74a111d2b5e0","keyword":"伸缩","originalKeyword":"本征磁致伸缩"},{"id":"7b911656-d18e-41b1-8fdd-d7b7bd1f75e1","keyword":"交换耦合作用","originalKeyword":"交换耦合作用"}],"language":"zh","publisherId":"gncl2004z1194","title":"R2Fe17(R=Y,Tm)化合物的伸缩随温度的变化","volume":"35","year":"2004"},{"abstractinfo":"研究了Tb0.36Dy0.64(Fe0.85Co0.15)1.95合金中替换元素Co的分布及其对材料内禀磁性和伸缩性能的影响.EDS分析表明,合金中产生了Co富集的富稀土相,Co在其中的含量为21.18%(原子分),高于基体中Co的含量9.36%.Co元素部分替换Fe未改变巨伸缩合金主相Laves相的结构,合金的Curie温度从378℃提高到420℃,拓展了应用温度范围;同时,Co元素的添加部分补偿了由于Tb/Dy比例提高所增大的晶各向异性,有利于改善合金低场性能.为避免样品的生长取向对本伸缩性能测量的影响,保证测量结果的准确性,制备了Tb0.36Dy0.64(Fb0.85Co0.15)1.95无取向等轴晶样品,测量了合金的饱和伸缩常数λs.通过Laves相XRD谱中(440)峰的劈裂,计算了沿〈111〉方向上的伸缩λ111,由此计算出沿〈100〉方向上的伸缩λ100.与Tb0.3Dy0.7Fe1.95合金相比,Co添加后λ111稍有降低,λ100得到显著提升,饱和伸缩常数λs基本相当.","authors":[{"authorName":"崔跃","id":"83322e70-8bb4-47e5-bd8b-52f4d65fca78","originalAuthorName":"崔跃"},{"authorName":"蒋成保","id":"eaf40a70-6460-4b45-896c-b591bd93851e","originalAuthorName":"蒋成保"},{"authorName":"徐惠彬","id":"81efae81-424b-4780-9450-ccfee1ffc7af","originalAuthorName":"徐惠彬"}],"doi":"10.3724/SP.J.1037.2010.00449","fpage":"214","id":"3dcb35dd-2745-429f-872f-0e5f71adfe13","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"76d32b7e-32d5-4561-93c7-433a9a57e2c5","keyword":"元素分布","originalKeyword":"元素分布"},{"id":"37a8590a-5b2a-42c8-ae94-9791f0b244a7","keyword":"应用温度","originalKeyword":"应用温度"},{"id":"b02c0289-89f4-44ba-9b5a-18867ff6a6ff","keyword":"晶各向异性","originalKeyword":"磁晶各向异性"},{"id":"c27cca46-3369-4fb1-92e7-06fc545cf8b8","keyword":"伸缩","originalKeyword":"磁致伸缩"}],"language":"zh","publisherId":"jsxb201102015","title":"Tb-Dy-Fe-Co合金伸缩性能","volume":"47","year":"2011"},{"abstractinfo":"通过X射线衍射手段研究了Tm2CrFe14.5 Si1.5化合物的热膨胀性质及伸缩性质.研究结果表明,Tm2CrFe14.5Si1.5化合物在303~623 K范围内,具有单相的Th2Ni17型结构;Tm2CrFe14.5Si1.5化合物的居里温度约为453 K,比其母合金Tm2 Fe17高约163 K;沿a轴方向上,Tm2CrFe 14.5 Si1.5化合物在423~448 K温度范围内出现负热膨胀现象,其热膨胀系数(α)a为-0.716×10-5/K;沿c轴方向上,在303~398 K温度范围内也出现负热膨胀现象,其热膨胀系数(α)c为-0.547×10-5/K.两者综合的结果使得在423~448 K温度范围内,Tm2CrFe14.5Si1.5化合物的体热膨胀系数(α)为-0.794 × 10-5/K.对本伸缩的研究结果表明,Tm2CrFe14.5 Si1.5化合物中存在着较强的各向异性的伸缩.","authors":[{"authorName":"梁飞飞","id":"1c44827b-264c-4e3e-ad24-942cd0208931","originalAuthorName":"梁飞飞"},{"authorName":"郝延明","id":"7a0d43e6-108f-458e-946d-500c605e4279","originalAuthorName":"郝延明"},{"authorName":"高纯静","id":"489774b0-a48d-4e32-8a24-7bee715adfd0","originalAuthorName":"高纯静"},{"authorName":"胡怀谷","id":"689159a0-fece-406a-8130-6f8e297a6eba","originalAuthorName":"胡怀谷"},{"authorName":"秦月婷","id":"53e6cc57-8d30-4f29-8040-37dcb5919457","originalAuthorName":"秦月婷"}],"doi":"","fpage":"703","id":"011b722a-2155-47d8-b92f-a9aa44a73b6c","issue":"6","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"76f36f7a-7622-426c-a44d-b191c5b87010","keyword":"Tm2CrFe14.5Si1.5化合物","originalKeyword":"Tm2CrFe14.5Si1.5化合物"},{"id":"cdf13726-7083-4fcc-a80b-f1ae626137a5","keyword":"负热膨胀","originalKeyword":"负热膨胀"},{"id":"83f1060d-e8dc-46da-a1e5-e7dade26f26f","keyword":"伸缩","originalKeyword":"本征磁致伸缩"},{"id":"f6d0e504-81f0-4304-b6f4-e1f99911e0dc","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb201206010","title":"Tm2CrFe14.5Si1.5化合物的反常热膨胀性质研究","volume":"30","year":"2012"},{"abstractinfo":"通过X射线衍射及测量手段研究了Gd2Fe14Cr3化合物的热膨胀性质及伸缩性质.研究结果表明,Gd2Fe14Cr3化合物在294~692K范围内,具有单相的Th2Zn17型菱方相结构;测量的研究结果表明,Gd2Fe014Cr3化合物的居里温度约为540K,比其母合金Gd2Fe17高约30K;在452~512K温度范围内Gd2Fe14Cr3化合物具有负热膨胀性质,其热膨胀系数为-1.6×10-5/K;对本伸缩的研究结果表明,Gd2Fe14Cr3化合物中存在着较强的各向异性的伸缩,而且由实验数据可以看出对体伸缩的贡献主要发生在c轴上.","authors":[{"authorName":"张雪敏","id":"b13ad644-9cfe-44da-b05e-551ed6885246","originalAuthorName":"张雪敏"},{"authorName":"郝延明","id":"6ae8e64e-859a-4669-b9c2-afb22ea94cd1","originalAuthorName":"郝延明"},{"authorName":"梁飞飞","id":"48f78532-edc4-4ffc-95b9-fbcabcc3890a","originalAuthorName":"梁飞飞"}],"doi":"","fpage":"76","id":"0dc9d7c0-335e-4fcc-bd90-5942e1cc278b","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"63a490a7-8a26-4006-ae54-6c90dd58e7d0","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"b7070954-9b13-4e46-af69-756828387afb","keyword":"反常热膨胀","originalKeyword":"反常热膨胀"},{"id":"3decf138-7f5e-47df-bf49-8fc4dffb5184","keyword":"居里温度","originalKeyword":"居里温度"}],"language":"zh","publisherId":"gncl2011z1021","title":"Gd2Fe14Cr3化合物的伸缩","volume":"42","year":"2011"},{"abstractinfo":"研究了Tb0.36Dy0.64(Fe0.85Co0.15)1.95合金中替换元素Co的分布及其对材料内禀磁性和伸缩性能的影响. EDS分析表明, 合金中产生了Co富集的富稀土相, Co在其中的含量为21.18%(原子分数), 高于基体中Co的含量9.36%. Co元素部分替换Fe未改变巨伸缩合金主相Laves相的结构, 合金的Curie温度从378℃提高到420℃, 拓展了应用温度范围; 同时, Co元素的添加部分补偿了由于Tb/Dy比例提高所增大的晶各向异性, 有利于改善合金低场性能. 为避免样品的生长取向对本伸缩性能测量的影响, 保证测量结果的准确性, 制备了 Tb0.36Dy0.64(Fe0.85Co0.15)1.95无取向等轴晶样品, 测量了合金的饱和伸缩常数 λs. 通过Laves相XRD谱中(440)峰的劈裂, 计算了沿<111>方向上的伸缩λ111, 由此计算出沿<100>方向上的伸缩λ100. 与Tb0.3Dy0.7Fe1.95合金相比, Co添加后λ111稍有降低, λ100得到显著提升, 饱和伸缩常数λs基本相当.","authors":[{"authorName":"崔跃蒋成保徐惠彬","id":"0035d488-1eaa-41cc-9eff-0577f2f0b4e3","originalAuthorName":"崔跃蒋成保徐惠彬"}],"categoryName":"|","doi":"10.3724/SP.J.1037.2010.00449","fpage":"214","id":"cab5e39d-2d9e-4230-8b9e-7cba75af8030","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"0c89a0d2-df79-4e9c-8b8a-99850f380e53","keyword":"元素分布","originalKeyword":"元素分布"},{"id":"d0bc41ce-735f-4680-b32b-193e3091edac","keyword":"operating temperature","originalKeyword":"operating temperature"},{"id":"2adf637e-bb72-44ec-b07e-b5742b0cf654","keyword":"magnetic anisotropy","originalKeyword":"magnetic anisotropy"},{"id":"05501da2-47bc-4407-85b1-f24fc06424fa","keyword":"magnetostriction","originalKeyword":"magnetostriction"}],"language":"zh","publisherId":"0412-1961_2011_2_13","title":"Tb-Dy-Fe-Co合金伸缩性能","volume":"47","year":"2011"},{"abstractinfo":"采用自行研发的5kg级MBDS-100型定向凝固炉在不同工艺参数条件下制备8~30mm规格TbDyFe合金棒.围绕伸缩特征,本文对材料组织、取向和伸缩行为进行分析.研究结果表明,ReFe3相组织会明显降低伸缩率;同一试样中组织不均匀时,伸缩率也存在显著差异;通过定向凝固得到取向为[110]的片状孪晶材料,其伸缩率明显提高,预应力下伸缩率λ超过2000×10-6.","authors":[{"authorName":"颜慧成","id":"2176b22a-e3cd-4369-a58a-f66f5bb3347d","originalAuthorName":"颜慧成"},{"authorName":"高建军","id":"fc4d2035-ecc1-4413-8f40-9d19e39e924f","originalAuthorName":"高建军"},{"authorName":"罗廷梁","id":"b895d7e5-3110-4cbf-9667-9ced75acad03","originalAuthorName":"罗廷梁"},{"authorName":"刘浏","id":"3d94a296-a9a7-497c-8e0d-ad88c365e144","originalAuthorName":"刘浏"}],"doi":"10.3969/j.issn.1005-8192.2002.04.008","fpage":"34","id":"60145efe-4393-46c7-a83e-5da2b640ec74","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"ecc32d2e-3b6b-4aea-9eb3-042e8ab61909","keyword":"TbDyFe合金","originalKeyword":"TbDyFe合金"},{"id":"3895f8f3-739f-45da-ac9a-d477446f6f4c","keyword":"伸缩","originalKeyword":"磁致伸缩"}],"language":"zh","publisherId":"jsgncl200204008","title":"TbDyFe合金的伸缩特征","volume":"9","year":"2002"},{"abstractinfo":"超伸缩材料具有很强的非线性耦合特性、滞特性和复杂动态特性.因此,建立能够准确描述超伸缩动器工作状态的模型成为关键问题.综述棒型超伸缩材料在多场耦合特性、滞特性建模研究状况以及超伸缩动器动力学建模研究状况,分析当前所建立多种模型的优缺点,并展望建模工作的发展趋势.","authors":[{"authorName":"崔旭","id":"c0c3dd80-1acf-4c90-9ce8-003cbc37d09e","originalAuthorName":"崔旭"},{"authorName":"何忠波","id":"a1b8cf8a-68e5-4a61-9484-2a3b29991cc9","originalAuthorName":"何忠波"},{"authorName":"李冬伟","id":"95b3bc99-3c87-490b-8d13-68cf49d35542","originalAuthorName":"李冬伟"},{"authorName":"李玉龙","id":"0e05062c-2737-4244-8830-ec59e76cbdad","originalAuthorName":"李玉龙"}],"doi":"33-1331/TJ.20110703.2110.001","fpage":"90","id":"98dac58b-5f64-49f6-8d54-07656ab7b160","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"373a852a-3a45-4605-a1ef-3eddce214ef9","keyword":"超伸缩材料","originalKeyword":"超磁致伸缩材料"},{"id":"b1e9f5c9-fda7-4b45-971e-c9e872b5329a","keyword":"动器","originalKeyword":"致动器"},{"id":"11ef9ce8-3c80-4683-be30-a1f68d8b1a65","keyword":"建模","originalKeyword":"建模"}],"language":"zh","publisherId":"bqclkxygc201104025","title":"超伸缩动器建模研究综述","volume":"00","year":"2011"},{"abstractinfo":"稀土超伸缩材料(Rare Earth Giant Magneto-Strictive Materials)作为21世纪一种最具有战略性的新型智能材料,其优良的特性和广泛的应用前景在国际范围内得到普遍重视,已成为伸缩材料研究的重点.简要介绍了稀土超伸缩材料的特性,研究现状及应用,指出了今后的研究方向和工作重点.","authors":[{"authorName":"李扩社","id":"abcfaab8-2826-4c4f-a514-cfb272cc7c7b","originalAuthorName":"李扩社"},{"authorName":"徐静","id":"a7700560-5e3b-4ecd-9789-9a7dfb7f589e","originalAuthorName":"徐静"},{"authorName":"张深根","id":"2109eaf6-1974-45ff-97d3-70bd5c0d5621","originalAuthorName":"张深根"}],"doi":"10.3969/j.issn.1005-8192.2003.06.008","fpage":"30","id":"d48c5a92-9e20-4d1d-8b32-aeb3c59e38ae","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"3375e746-1468-4ef0-a22d-cb69174dd059","keyword":"稀土超伸缩材料","originalKeyword":"稀土超磁致伸缩材料"},{"id":"01d7c90d-44c2-481f-b7e8-5f0e73fc2858","keyword":"性能","originalKeyword":"性能"},{"id":"3101187c-2e35-4acb-8d7c-a733c9b33525","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"jsgncl200306008","title":"稀土超伸缩材料进展","volume":"10","year":"2003"},{"abstractinfo":"简要介绍了伸缩现象及几类常见的伸缩材料,并对反应堆用伸缩材料做了详尽的设计;特别是对伸缩材料的抗辐照性能、伸缩性能及高温性能做了详尽地分析.","authors":[{"authorName":"王宏","id":"507ad0c1-95c0-416e-9dc8-a7f2d26a08fd","originalAuthorName":"王宏"},{"authorName":"张登友","id":"d99bda2b-fdcb-4467-93fa-5706b76993ee","originalAuthorName":"张登友"},{"authorName":"杨百炼","id":"8cbd5316-1ff5-44f6-bd69-1ba66bf2053b","originalAuthorName":"杨百炼"},{"authorName":"刘晓珍","id":"253616b4-b701-4192-bfe4-5217a2b7dba5","originalAuthorName":"刘晓珍"}],"doi":"","fpage":"694","id":"5bb55a66-20c2-4b33-8401-c958c1cdc2b8","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"68b532c3-4e3a-4dfb-8aac-e4fa0282e7ab","keyword":"伸缩","originalKeyword":"磁致伸缩"},{"id":"57300022-2dc0-46f2-a96e-ad715baf8aab","keyword":"辐照效应","originalKeyword":"辐照效应"},{"id":"43e51686-388f-4009-8f8a-a10716732978","keyword":"反应堆","originalKeyword":"反应堆"}],"language":"zh","publisherId":"gncl200705002","title":"反应堆用伸缩材料设计","volume":"38","year":"2007"}],"totalpage":1660,"totalrecord":16597}