{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过光学显微镜、X射线衍射及背散射电子衍射技术,研究了精轧温度,即高温精轧和低温精轧,对含Nb、B的超纯Cr17铁素体不锈钢薄板成形性及表面皱折的影响。结果表明:低温精轧有利于得到细小及均匀的冷轧退火组织。低温精轧有利于改善冷轧退火板织构的均匀性,促使冷轧退火板得到均匀、规则的γ纤维再结晶织构并形成更少的取向晶粒簇。因此,低温精轧是显著改善冷轧退火板成形性能及抗皱折性的有效工艺。","authors":[{"authorName":"高飞","id":"95067914-5498-477b-96ca-7056b3c8a085","originalAuthorName":"高飞"},{"authorName":"于德健","id":"fc4d43d7-1079-4cba-9869-11f9dde07e28","originalAuthorName":"于德健"},{"authorName":"刘振宇","id":"76543d69-87d1-4083-b338-fc165bb88d4c","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"f3dda7af-4e73-4908-823b-aba6679e249d","originalAuthorName":"王国栋"}],"doi":"","fpage":"96","id":"e26d0888-67a4-4ba0-9229-2d7a790b8f72","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"236f4139-22a1-484f-a9a5-1dc44fac5e51","keyword":"铁素体不锈钢","originalKeyword":"铁素体不锈钢"},{"id":"b2a48687-4d24-4137-9542-dec20b299e6c","keyword":"精轧温度","originalKeyword":"精轧温度"},{"id":"d6026f81-0b65-4584-8eda-3f403e110201","keyword":"成形性能","originalKeyword":"成形性能"},{"id":"5896a441-bb2d-4923-833e-db0e1c8704c6","keyword":"表面皱折","originalKeyword":"表面皱折"}],"language":"zh","publisherId":"jsrclxb201108019","title":"精轧温度对含铌、硼Cr17薄板成形性及表面皱折的影响","volume":"32","year":"2011"},{"abstractinfo":"以铌稳定化的Cr17铁素体不锈钢为试验材料,系统研究了精轧温度,即高温精轧和低温精轧,对组织、织构和成形性能的影响.2种不同工艺的热轧板经相同的热带退火、冷轧及退火处理后,分别采用金相显微镜及X射线衍射技术观察2种工艺条件下的组织和织构演变.研究结果表明:与高温精轧相比,低温精轧有利于得到细小及均匀的冷轧退火组织;有利于冷轧退火板形成较强的γ纤维再结晶织构,并消除γ纤维再结晶织构的偏转.因此,低温精轧能够显著提高冷轧退火板的成形性能.","authors":[{"authorName":"高飞","id":"ed52c992-cbb4-426c-ac7b-e7a9be6aec99","originalAuthorName":"高飞"},{"authorName":"于德健","id":"46f6b147-ce2a-443f-b18a-d20c48f6a33f","originalAuthorName":"于德健"},{"authorName":"刘振宇","id":"ae33dbbe-7cf6-48fd-a6f7-c6b7433cd264","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"521b6b16-edb4-454a-a155-00268488136d","originalAuthorName":"王国栋"}],"doi":"","fpage":"68","id":"022590aa-a8a3-46c9-9ad4-73fdc267b2a3","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"62f71768-a4b4-473d-8570-4f888712765a","keyword":"Cr17铁素体不锈钢","originalKeyword":"Cr17铁素体不锈钢"},{"id":"8b742871-296b-4a43-a9c4-d159c4f1d01c","keyword":"精轧温度","originalKeyword":"精轧温度"},{"id":"86675a93-38f4-48e5-bd78-9fe7365600cd","keyword":"组织","originalKeyword":"组织"},{"id":"8a1f2c28-3748-4204-883c-346350c86283","keyword":"织构","originalKeyword":"织构"},{"id":"2410f0ba-b1c3-4d20-92e8-93e0b6df6aa5","keyword":"成形性","originalKeyword":"成形性"}],"language":"zh","publisherId":"gt201106014","title":"精轧温度对含铌Cr17铁素体不锈钢组织、织构及成形性的影响","volume":"46","year":"2011"},{"abstractinfo":"研究了超纯21%Cr铁素体不锈钢精轧温度对织构演变规律和成形性能的影响.将粗轧板坯切块并在900~750℃范围内进行精轧,随后经相同的热轧退火、酸洗、冷轧及退火处理,系统研究了试样的宏观织构、显微织构和成形性能的变化规律.结果表明:精轧温度对铁索体不锈钢的织构演变有重要影响,降低热轧精轧温度有利于增加热轧退火板中{111}再结晶织构组分;冷轧及冷轧退火板的织构分布具有明显的遗传性,热轧板中较高的{111}再结晶织构组分,促进了冷轧退火板中{111}再结晶织构的生成,从而提高了铁索体不锈钢的成形性能.","authors":[{"authorName":"张驰","id":"0b1d244b-db01-4ae8-a1cf-b2ead9a11ce2","originalAuthorName":"张驰"},{"authorName":"高飞","id":"0b334a4e-668d-478e-b925-ded224984ee3","originalAuthorName":"高飞"},{"authorName":"刘振宇","id":"e851e5fa-573b-4259-a714-8d2852409969","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"5c14159a-8488-4bd3-8ebd-0fbb9b4e1200","originalAuthorName":"王国栋"}],"doi":"","fpage":"55","id":"ac37d98c-b78f-48fb-b2aa-90abc320851a","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"78bda3b2-8ba4-429c-9353-c7be1ecbbfd5","keyword":"铁素体不锈钢","originalKeyword":"铁素体不锈钢"},{"id":"e9f19715-3ffd-4714-94ea-2824d59954b5","keyword":"精轧温度","originalKeyword":"精轧温度"},{"id":"febe05f8-a227-456b-a982-713728c9ed6b","keyword":"织构演变","originalKeyword":"织构演变"},{"id":"36903820-dc29-4f3b-9d77-f7e38302bf5e","keyword":"成形性能","originalKeyword":"成形性能"}],"language":"zh","publisherId":"gt201103014","title":"精轧温度对超纯21%Cr铁素体不锈钢织构演变和成形性能的影响","volume":"46","year":"2011"},{"abstractinfo":"以钛稳定化的超纯Crl7铁素体不锈钢为研究对象,系统研究了精轧温度对铁素体不锈钢薄板屈服行为的影响。经高温精轧和低温精轧后,两种工艺的热轧板采用相同的退火及冷轧工艺得到成品薄板。采用低温精轧后,拉伸过程中薄板的Ltiders应变降低至0.5%左右,与高温精轧相比减少大约66.7%。通过金相显微组织观察、X射线衍射检测、内耗测量及TEM观察,结果表明:与高温精轧相比,低温精轧有利于细化及均匀化成品板的组织;低温精轧有利于细小球形析出相TiC的形成,降低基体中固溶间隙原子的含量,导致低温精轧后成品板Ltiders应变的减少。这与成品板内耗谱变化相一致。","authors":[{"authorName":"高飞","id":"1a2146a9-ac5a-489f-9d02-4c4384838a4d","originalAuthorName":"高飞"},{"authorName":"张维娜","id":"8488f7a7-90c9-4e8a-8e79-e9d7cb88774a","originalAuthorName":"张维娜"},{"authorName":"张志波","id":"ed1c37e9-d654-4299-8550-a3d09657d77b","originalAuthorName":"张志波"},{"authorName":"刘振宇","id":"83256692-6cc1-4579-8aef-c44d0cd24be4","originalAuthorName":"刘振宇"},{"authorName":"王国栋","id":"378eaef3-44cc-49cb-a2a4-0a7a25823053","originalAuthorName":"王国栋"}],"doi":"","fpage":"56","id":"b02c03ee-eb76-47e6-9714-b686779c9168","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5fa79019-b23d-428b-9431-f3c9a2e12068","keyword":"Crl7","originalKeyword":"Crl7"},{"id":"361ba99f-8d64-421c-9de1-4a7e674afd8c","keyword":"铁素体不锈钢","originalKeyword":"铁素体不锈钢"},{"id":"0761b330-86dd-479a-ac84-67c0e5c09ec5","keyword":"精轧温度","originalKeyword":"精轧温度"},{"id":"ba82b12b-b99e-484c-9e42-e5476759e92b","keyword":"屈服行为","originalKeyword":"屈服行为"},{"id":"28ecd4b4-ab31-4c2b-87fb-a1a1479a8d12","keyword":"内耗","originalKeyword":"内耗"}],"language":"zh","publisherId":"gt201107015","title":"钛稳定化超纯铁素体不锈钢的屈服行为","volume":"46","year":"2011"},{"abstractinfo":"针对昆钢400MPa盘条钢筋生产过程中出现的屈服强度及断后伸长率偏低、同卷盘条力学性能不稳定等问题,取样进行了化学成分、金相显微组织、断口形貌及夹杂物检验分析。结果表明:屈服强度及断后伸长率偏低的主要原因为试样金相显微组织出现8%~30%的粒状贝氏体,粒状贝氏体质量分数30%的试样断口形貌表现为脆性断裂,钢筋塑韧性差;同卷盘条力学性能不稳定的主要原因为冷却速度不同造成金相组织中贝氏体质量分数不同。针对上述情况,炼钢采取出钢全程底吹氩及渣洗工艺,轧钢采取降低精轧及吐丝温度(精轧入口温度控制为870~890℃、吐丝温度控制为840~870℃)、减弱斯太尔摩控冷强度、增加辊道速度等措施,消除了400MPa盘条钢筋性能异常情况。","authors":[{"authorName":"张卫强","id":"482c7097-8dc6-4594-9279-d6899ce13a6e","originalAuthorName":"张卫强"},{"authorName":"陈伟","id":"01517db5-e809-4af3-a395-08d23cee5fae","originalAuthorName":"陈伟"},{"authorName":"苏灿东","id":"39f1ba42-f09d-4488-b3a9-e1f437ed6756","originalAuthorName":"苏灿东"},{"authorName":"王文锋","id":"4b8a2e2f-3058-47d9-a5f7-eba59b5a416c","originalAuthorName":"王文锋"}],"doi":"","fpage":"23","id":"b7216718-3425-4818-965b-c6ac8d5efbc1","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"214d3845-024e-448f-baa7-4500e59d29fc","keyword":"400MPa盘条钢筋","originalKeyword":"400MPa盘条钢筋"},{"id":"6730344c-e677-4838-8a2c-138ec6461e1a","keyword":"性能异常","originalKeyword":"性能异常"},{"id":"0d95d0dc-c29e-4beb-8814-07e81ddba37f","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"345c0c0d-4764-4a34-b8a6-55f0fd31a8a1","keyword":"精轧温度","originalKeyword":"精轧温度"},{"id":"281fb3d8-2fb9-45d0-87b8-d894c70425bd","keyword":"吐丝温度","originalKeyword":"吐丝温度"},{"id":"5104c222-b8aa-4d83-8c75-86805c88caa3","keyword":"控冷强度","originalKeyword":"控冷强度"}],"language":"zh","publisherId":"gtyj201203007","title":"400MPa盘条钢筋性能异常原因分析及控制","volume":"40","year":"2012"},{"abstractinfo":"根据热轧带钢是否发生塑形变形,将CSP生产线精轧区划分为两类区域,并分别对这两类区域内影响带钢温度的因素进行了研究,从而建立了精轧区的带钢温度模型。运用Matlab的有约束非线性优化函数和origin的用户自定义回归选项等相关工具,分别优化得到了该温度模型的相关参数,从而确定了精轧区带钢温度模型。最后,利用所确定的模型对带钢的温度进行了预报,并与现场实测数据比较,结果表明,所确定的带钢温度模型具有较高的预报精度,适合CSP生产线的实际生产。","authors":[{"authorName":"胡盛德,熊文涛,李立新","id":"ac59f36d-ce86-4ffb-95c0-4b710574f5e5","originalAuthorName":"胡盛德,熊文涛,李立新"}],"categoryName":"|","doi":"","fpage":"11","id":"396f217e-1702-4e0d-a590-0c31a9035edc","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"ddbe6c62-3416-40cd-851f-b37d5792c410","keyword":"CSP ","originalKeyword":"CSP "},{"id":"f56b9073-ccfa-447d-a999-6bd0aad793b3","keyword":" finishing rolling ","originalKeyword":" finishing rolling "},{"id":"3b1038a7-1e23-40b7-9fc1-f21a2675cc6f","keyword":" temperature model ","originalKeyword":" temperature model "},{"id":"5b828a38-3391-4bd0-998c-8d542fdf162d","keyword":" optimization ","originalKeyword":" optimization "},{"id":"80547868-78d5-4474-ab12-bad63e2a104b","keyword":" regression","originalKeyword":" regression"}],"language":"zh","publisherId":"1001-0963_2012_6_10","title":"CSP精轧区带钢温度模型","volume":"24","year":"2012"},{"abstractinfo":"根据热轧带钢是否发生塑形变形,将CSP生产线精轧区划分为两类区域,并分别对这两类区域内影响带钢温度的因素进行了研究,从而建立了精轧区的带钢温度模型。运用Matlab的有约束非线性优化函数和origin的用户自定义回归选项等相关工具,分别优化得到了该温度模型的相关参数,从而确定了精轧区带钢温度模型。最后,利用所确定的模型对带钢的温度进行了预报,并与现场实测数据比较,结果表明,所确定的带钢温度模型具有较高的预报精度,适合CSP生产线的实际生产。","authors":[{"authorName":"胡盛德","id":"23f9a7d2-df8d-4ab6-9513-28ec74dd19a6","originalAuthorName":"胡盛德"},{"authorName":"熊文涛","id":"dd5f9f4a-b8ba-458c-8cc0-623817ff8252","originalAuthorName":"熊文涛"},{"authorName":"李立新","id":"534f86eb-07f5-42e4-8674-93418234d417","originalAuthorName":"李立新"}],"doi":"","fpage":"11","id":"9fc31c1a-8ba9-4bdb-b642-73f1dc395a74","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6a30e342-f8a2-476b-8ac4-e60c954bf730","keyword":"CSP","originalKeyword":"CSP"},{"id":"ff6090b5-1a3c-452f-83db-a02291bb8af8","keyword":"精轧","originalKeyword":"精轧"},{"id":"6e766530-e9de-4388-aebe-ed218bcf9377","keyword":"温度模型","originalKeyword":"温度模型"},{"id":"8f61e12f-adf6-4c33-9431-ead578edcf7f","keyword":"优化","originalKeyword":"优化"},{"id":"e845631d-7781-417e-a187-e4e299e49b36","keyword":"回归","originalKeyword":"回归"}],"language":"zh","publisherId":"gtyjxb201206003","title":"CSP精轧区带钢温度模型","volume":"24","year":"2012"},{"abstractinfo":"针对宝钢2050 mm热连轧温度设定系统的技术改造,分析研究了现有的精轧机组温度设定系统.基于现场数据采集系统的实测数据,提出了一种空冷温降辐射系数的修正方法,并采用新的指数模型替代原水冷温降模型.同时,为满足现场生产精度和稳定性的需要,建立了精轧机组的短时和长时自适应温度模型.仿真及实验结果表明,改造后温度设定系统的预测精度比原温度设定系统有更高的精度,并且在变钢种变规格轧制时误差波动小.","authors":[{"authorName":"陈水宣","id":"7bc23c49-321a-4a6b-b138-be8d0b026179","originalAuthorName":"陈水宣"},{"authorName":"邹俊","id":"d23dc046-9a83-479e-85ad-72a9bd5b0134","originalAuthorName":"邹俊"},{"authorName":"傅新","id":"dc2674ad-3ab6-4bfd-80bc-f62c01006c0d","originalAuthorName":"傅新"},{"authorName":"杨华勇","id":"3c669971-991a-4943-96f8-79b7cd23a33f","originalAuthorName":"杨华勇"}],"doi":"","fpage":"44","id":"86516e81-332d-4c96-b5de-04b39d8ef04e","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a18216a4-8949-46de-9c1c-013338e704d0","keyword":"热轧带钢","originalKeyword":"热轧带钢"},{"id":"193cf557-43fe-48bd-8938-442650f34613","keyword":"精轧机组","originalKeyword":"精轧机组"},{"id":"a23720cd-2821-4bb8-ba1f-0558d0735c37","keyword":"温度模型","originalKeyword":"温度模型"},{"id":"e162e9e9-ad59-4b26-9ac6-d39794df6ec3","keyword":"自适应","originalKeyword":"自适应"}],"language":"zh","publisherId":"gt200609011","title":"热连轧精轧温度设定系统及自适应研究","volume":"41","year":"2006"},{"abstractinfo":"分析了热轧带钢生产过程中在精轧机组各机架间的温度变化过程,考虑机架间水冷综合换热系数对终轧温度的影响,提出了针对水冷综合换热系数的自适应策略.在现场实测数据的基础上,编制了精轧温度控制模型系数自适应计算的离线模拟软件,预先设定虚拟的通条带钢温度实测值,检验模型自适应系数的变化及其对下一次同规格带钢温度计算值的影响.计算结果表明,在本文建立的模型自适应策略下,自适应系数针对不同的轧件温度实测值可以进行迅速而有效的变化,使计算值迅速逼近实测值,表明本文建立的自适应策略有效.","authors":[{"authorName":"薛文颖","id":"cc933d25-e13f-4878-8491-b0c1a77f098e","originalAuthorName":"薛文颖"},{"authorName":"龚殿尧","id":"328ca4a9-eb67-4637-88d1-cb7c3fef741b","originalAuthorName":"龚殿尧"},{"authorName":"吴迪","id":"13183782-ce36-495e-81f6-aad8d209f82b","originalAuthorName":"吴迪"},{"authorName":"刘相华","id":"2ca76edb-c63d-447c-9fe7-b0997ebdab3f","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"a0eedfb8-1507-4d76-8847-2f62883c223b","originalAuthorName":"王国栋"}],"doi":"","fpage":"389","id":"f13ce947-a826-4bcd-be70-3c9ee2ee4d5a","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"6bde4a2c-ac9a-4f9f-bfda-6440a782bcb3","keyword":"热轧带钢","originalKeyword":"热轧带钢"},{"id":"4b65742a-d1e1-4dfe-971a-99abcfe71b8c","keyword":"精轧机组","originalKeyword":"精轧机组"},{"id":"48998a7f-9b63-435e-a209-7a0c261955e4","keyword":"温度控制","originalKeyword":"温度控制"},{"id":"224c6def-f27f-4d83-9026-7b12110c2fb3","keyword":"自适应","originalKeyword":"自适应"},{"id":"b3be2e6c-9228-4593-971a-233f31b9611e","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"clkxygy200903023","title":"热连轧精轧温度控制的自适应策略研究","volume":"17","year":"2009"},{"abstractinfo":"从现场实际出发研究了精轧各个环节的温度变化过程,分析了带钢热连轧终轧温度与各影响因素之间的关系.同时将温度模型程序化,采用计算机系统进行分析和计算,提出了行之有效的温度模型方案.该温度模型对其它热轧生产线同样适用.","authors":[{"authorName":"薛文颖","id":"aff1efb8-9dba-4aeb-8db3-8f028fa956d1","originalAuthorName":"薛文颖"},{"authorName":"龚殿尧","id":"f7417b1d-1ded-4769-a689-957974eab5d7","originalAuthorName":"龚殿尧"},{"authorName":"赵宪明","id":"4ce39bb7-7384-4221-a0a0-053639ae7e23","originalAuthorName":"赵宪明"},{"authorName":"吴迪","id":"ad513a70-6d82-47a4-8e44-64cbb47b9fd0","originalAuthorName":"吴迪"},{"authorName":"刘相华","id":"f774cc2e-7b87-4a33-a630-98feb2a6f6ce","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"b777d54a-834a-48d6-bb69-c510ed87aa9c","originalAuthorName":"王国栋"}],"doi":"10.3969/j.issn.1001-1447.2006.04.007","fpage":"27","id":"22308e9f-785e-4ea9-b12d-8bab2282c10d","issue":"4","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"1f00b11c-620d-41f8-ae39-8cafded119b4","keyword":"热连轧","originalKeyword":"热连轧"},{"id":"bcdb1c0c-f4a8-4b10-b880-36317b996b8e","keyword":"带钢","originalKeyword":"带钢"},{"id":"f7d541ce-3446-46f9-9247-627a71dd5b7e","keyword":"精轧机组","originalKeyword":"精轧机组"},{"id":"2b26ac22-793e-4895-88e1-e6d2e24ff6e3","keyword":"终轧温度","originalKeyword":"终轧温度"},{"id":"13c2de4d-8327-4c2c-b79d-c329f64f266f","keyword":"温度控制数学模型","originalKeyword":"温度控制数学模型"}],"language":"zh","publisherId":"gtyj200604007","title":"热连轧精轧机组温度控制数学模型研究","volume":"34","year":"2006"}],"totalpage":5052,"totalrecord":50519}