{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用单向对称拉压低周疲劳方法在轴对称工业纯铁试样中引入了临界长度约30 μm左右、厚度为0.5-1.5 μm的内部微裂纹,随后在900℃下分别进行1.5和5 h的高温真空加热处理.结果表明:随保温时间的延长,内部疲劳微裂纹的纵剖面二维形态发生了主要由表面扩散控制的形态演变,由初始的扁椭圆型截面形态演化为由多个定向排列的球形空洞组成的球洞串截面形态.在横剖面上可观察到初始裂纹体分解为\"外围圆环+环内球洞\"的形态演变图象.对材料内部微裂纹形态演变的物理模型,及其对裂纹几何形态与尺寸的依赖性进行了讨论.","authors":[{"authorName":"张海龙","id":"d2fb23d1-3cea-4270-ade6-f75d56773619","originalAuthorName":"张海龙"},{"authorName":"孙军","id":"85ff2ec2-3cf4-431d-af3d-9ebe13b42af0","originalAuthorName":"孙军"}],"doi":"10.3321/j.issn:0412-1961.2002.03.004","fpage":"239","id":"0ac3f901-23b8-44cc-b7b1-5cf4971a8b5a","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"064e3567-6e99-4706-9163-27a63748210c","keyword":"内部疲劳微裂纹","originalKeyword":"内部疲劳微裂纹"},{"id":"16bb84d5-8e27-4543-a972-bda26f4e83f6","keyword":"形态演变","originalKeyword":"形态演变"},{"id":"1651d148-6379-4cc2-888e-c8de1997b213","keyword":"球洞","originalKeyword":"球洞"},{"id":"ad6b8409-b755-4d0f-bb53-2188d52ffb03","keyword":"扩散机制","originalKeyword":"扩散机制"}],"language":"zh","publisherId":"jsxb200203004","title":"工业纯铁内部疲劳微裂纹扩散愈合过程中的形态演变","volume":"38","year":"2002"},{"abstractinfo":"研究了聚碳酸酯/聚乙烯(PC/PE)共混物在双螺杆挤出初期过程中的形态演变规律.用扫描电子显微镜(SEM)观察螺杆轴向不同位置的共混物分散相形态,分析了混合初期PC分散相形态的演变规律;建立了PC分散相在软化变形条件下,由颗拉状变化为片状、纤维状结构并最终破碎松弛为球形粒子的模型.讨论了混合初期螺杆构型对PC分散相形态的影响,发现增加捏合块数量能降低混合初期分散相的平均粒径及其分布.","authors":[{"authorName":"尹波","id":"18fe4b82-b5bf-4ef1-a9dd-b0a308e95f17","originalAuthorName":"尹波"},{"authorName":"赵印","id":"125938b3-6c3e-4a50-a4b1-3a79b628eb80","originalAuthorName":"赵印"},{"authorName":"安海宁","id":"8b658560-9147-4bf5-b153-e46d44aee18d","originalAuthorName":"安海宁"},{"authorName":"潘敏敏","id":"8fb0e1a1-2264-4081-8e1b-827f7731f6a9","originalAuthorName":"潘敏敏"},{"authorName":"杨鸣波","id":"6a957519-31e1-4906-bedb-0cba6d54cd3b","originalAuthorName":"杨鸣波"}],"doi":"","fpage":"192","id":"44d4d358-35c2-421e-a3a6-bfc7d07c5ba8","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8a829aa0-1f98-43e7-80bd-1ae34e10d220","keyword":"聚碳酸酯/聚乙烯共混物","originalKeyword":"聚碳酸酯/聚乙烯共混物"},{"id":"02d8f413-33e9-4de0-85a3-bf144ea003eb","keyword":"双螺杆挤出","originalKeyword":"双螺杆挤出"},{"id":"fc0d01f6-7196-4fde-af1f-4031daeb7ffa","keyword":"形态演变","originalKeyword":"形态演变"},{"id":"7a492f49-4dd4-4e41-b394-fd9406e247d2","keyword":"粒径","originalKeyword":"粒径"},{"id":"ce2d559c-a29a-4b80-ba53-0cfe3c0d83d3","keyword":"粒径分布","originalKeyword":"粒径分布"}],"language":"zh","publisherId":"gfzclkxygc200604049","title":"PC/PE共混体系在双螺杆挤出初期的形态演变","volume":"22","year":"2006"},{"abstractinfo":"利用扫描电镜观测了聚氯乙烯(PVC)颗粒形态随加工温度、时间及转速变化而出现的变形、粘接以及形成凝胶的演变过程.在低温低转速时,塑化峰处的PVC颗粒只有部分融化与粘合,未完全塑化,在塑化峰后一定时间,PVC颗粒才完全融化粘合;但高温时PVC颗粒很快达到融合.差示扫描量热(DSC)结果表明,在150℃转速由10 r/min增加到50 r/min时,PVC的凝胶度由18%提高到78%;在30 r/min混炼5 min,加工温度由150℃升到200℃时,凝胶度由4%增加到95%.固定转速改变加工时间,PVC的凝胶度随着加工时间的延长先快速上升然后趋于平衡,且平衡值与加工温度和转速有关.","authors":[{"authorName":"邹嘉佳","id":"7fff89b9-d8c7-4c4a-b0ab-231d1b8876e6","originalAuthorName":"邹嘉佳"},{"authorName":"苏琳","id":"4976d592-7982-4204-b6bb-738fc7295800","originalAuthorName":"苏琳"},{"authorName":"游峰","id":"7451defc-2959-4cd5-9276-d86dbde07fbe","originalAuthorName":"游峰"},{"authorName":"杨卓","id":"d2d778c0-d279-467c-b1fc-913786b3f7d3","originalAuthorName":"杨卓"},{"authorName":"陈光顺","id":"35427c0e-ecac-4ce7-8eba-c8fbb3ca3dd6","originalAuthorName":"陈光顺"},{"authorName":"郭少云","id":"3f37dd57-6490-437c-8e76-1695a93e9c49","originalAuthorName":"郭少云"}],"doi":"","fpage":"107","id":"a371f9c2-fd33-42de-9a31-87edc2f634a2","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"205f8329-c15e-4028-900e-2aa4734efd34","keyword":"聚氯乙烯","originalKeyword":"聚氯乙烯"},{"id":"ad457223-ab20-4772-8857-07510acedb8a","keyword":"形态演变","originalKeyword":"形态演变"},{"id":"06cccab6-159b-41d7-bfad-9542f80a768a","keyword":"凝胶度","originalKeyword":"凝胶度"},{"id":"b2d9aefd-dcf4-4c7d-8407-7a2e4e957a5d","keyword":"结晶","originalKeyword":"结晶"}],"language":"zh","publisherId":"gfzclkxygc201011029","title":"加工过程中PVC颗粒形态的演变及凝胶化","volume":"26","year":"2010"},{"abstractinfo":"在室温下对工业纯铁试样进行了控制应变幅的等幅、拉-压、低周疲劳加载,随后在1173 K温度下从1 h延续至7 h进行真空退火处理,并分别对疲劳试样和退火试样中的疲劳裂纹形态进行了SEM观察.用电子分析天平对各组试样进行了密度检测,结果表明:同原始试样相比,随疲劳周次增加,疲劳试样密度逐步减小,在随后的1 h到3 h退火期间,疲劳试样密度值无明显变化;当从3 h至7 h退火时,试样的密度逐渐增大,并且在7 h退火时接近了原始密度值.分析表明,内部疲劳微裂纹的萌生是试样密度值减小的原因;在早期的退火处理阶段,表面扩散机制支配裂纹的形态演变,因而试样密度无明显增大;而在退火处理后期,体扩散及晶界扩散作用缩小了裂纹演变形成的空洞,使得试样密度增大并逐渐恢复至原始密度值.","authors":[{"authorName":"张海龙","id":"d2a475fe-ed4b-41df-9605-10c2d8d23a19","originalAuthorName":"张海龙"},{"authorName":"孙军","id":"d3182ca0-7d13-43d4-b3cb-426b2de1d2cc","originalAuthorName":"孙军"}],"doi":"10.3321/j.issn:0412-1961.2003.04.004","fpage":"351","id":"10d53da5-e483-4b40-ad00-f24098b7156a","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"cc72088a-44dc-475e-9695-7c7c38b74bd0","keyword":"工业纯铁","originalKeyword":"工业纯铁"},{"id":"292ae473-d8f5-4d59-8687-e96a91d470e3","keyword":"疲劳裂纹","originalKeyword":"疲劳裂纹"},{"id":"408fed1e-ec46-4b1f-a21e-cf6861c0a958","keyword":"形态演变","originalKeyword":"形态演变"},{"id":"b204311e-77b3-4de6-ae5e-10168813d3f3","keyword":"密度测量","originalKeyword":"密度测量"}],"language":"zh","publisherId":"jsxb200304004","title":"内部疲劳微裂纹退火愈合过程中纯铁的密度变化","volume":"39","year":"2003"},{"abstractinfo":"当处于气液界面的类脂类化合物的单分子膜被压缩时,随着分子间距的缩小,单分子膜将经历一系列相变过程.通过荧光显微术可以观测到新相的成核和生长过程.由于单分子膜的二维特性,该系统中的实验观测对于检验和发展二维界面生长理论尤为重要.本文总结了近年来本课题组与相关单位合作,在单分子膜系统中发现的实验现象以及对其生长机制的系列研究.内容包括对单分子膜系统中的成核、界面稳定性、枝晶生长、形态演变等的观测和分析.","authors":[{"authorName":"闵乃本","id":"0a5a7967-7cfa-41a4-bf5b-0dd1ccd6a645","originalAuthorName":"闵乃本"},{"authorName":"王牧","id":"18300daa-a4ac-4838-95b6-7c516283cb69","originalAuthorName":"王牧"},{"authorName":"李大伟","id":"a6b50485-d666-496f-ad8d-0c67c83a9cdf","originalAuthorName":"李大伟"}],"doi":"10.3969/j.issn.1000-985X.2002.03.002","fpage":"182","id":"35afa22b-6c6d-4401-a289-4ed2ae59bc83","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c34b4586-73b8-4234-adb4-c2b759677318","keyword":"单分子膜","originalKeyword":"单分子膜"},{"id":"6e787efd-4a37-4701-9aca-03a84783a5e1","keyword":"界面生长","originalKeyword":"界面生长"},{"id":"2fb226fa-98a2-440a-854a-cde6b92e7638","keyword":"成核","originalKeyword":"成核"},{"id":"685ff2f3-21d6-461c-86eb-ba585d07fd16","keyword":"枝晶生长","originalKeyword":"枝晶生长"},{"id":"82d0003f-f56d-4cb9-a589-c0c9bd40557e","keyword":"形态演变","originalKeyword":"形态演变"}],"language":"zh","publisherId":"rgjtxb98200203002","title":"单分子膜系统中二维生长过程的研究","volume":"31","year":"2002"},{"abstractinfo":"","authors":[{"authorName":"","id":"cdde5eaf-89a5-4c24-a3af-95039088b53f","originalAuthorName":""},{"authorName":"","id":"37c6ef47-903a-415c-86ee-f2452276d416","originalAuthorName":""},{"authorName":"","id":"39b2d1fa-993b-4be3-8f2e-1eae95d31363","originalAuthorName":""},{"authorName":"","id":"b9fdb7ac-5fcd-46f6-8080-e51c4c8ab42b","originalAuthorName":""},{"authorName":"","id":"1079aeff-4947-4ef8-bbee-6b64b095ad74","originalAuthorName":""}],"doi":"","fpage":"241","id":"3b636634-e4d8-4453-9fe7-b458c0f2815b","issue":"3","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"ad79574b-df17-4e69-aa33-fe546fdfab30","keyword":"奥氏体晶粒尺寸","originalKeyword":"奥氏体晶粒尺寸"},{"id":"d3ee74c5-60fc-403f-b4f9-5f83b2d247f5","keyword":"低碳贝氏体钢","originalKeyword":"低碳贝氏体钢"},{"id":"d923838d-9d28-4964-8803-67c9479afc76","keyword":"低温韧性","originalKeyword":"低温韧性"},{"id":"b6c29d52-d6af-4be2-9b56-1160efaa3d73","keyword":"焊缝金属","originalKeyword":"焊缝金属"},{"id":"ee85a7f1-9fbb-44cc-a56f-3d85e699273b","keyword":"低温冲击韧性","originalKeyword":"低温冲击韧性"},{"id":"7965e99e-1080-4439-87ab-4c19b29c7bdd","keyword":"针状铁素体","originalKeyword":"针状铁素体"},{"id":"692c2c49-db8a-4c88-80d6-6005ec5cb728","keyword":"原位观测","originalKeyword":"原位观测"},{"id":"d1e44bdb-0b4e-4efd-a2c5-b656e9765213","keyword":"形态演变","originalKeyword":"形态演变"}],"language":"zh","publisherId":"clkxjsxb-e201203008","title":"Analytical Investigation of Prior Austenite Grain Size Dependence of Low Temperature Toughness in Steel Weld Metal","volume":"28","year":"2012"},{"abstractinfo":"采用单向对称拉压低周疲劳方法在轴对称工业纯铁试样中引入了临界长度约30 μm左右、厚度为0.5-1.5 μm的内部微裂纹,随后在900℃下分别进行1.5和5 h的高温真空加热处理.结果表明:随保温时间的延长,内部疲劳微裂纹的纵剖面二维形态发生了主要由表面扩散控制的形态演变,由初始的扁椭圆型截面形态演化为由多个定向排列的球形空洞组成的球洞串截面形态.在横剖面上可观察到初始裂纹体分解为\"外围圆环+环内球洞\"的形态演变图象.对材料内部微裂纹形态演变的物理模型,及其对裂纹几何形态与尺寸的依赖性进行了讨论.","authors":[{"authorName":"张海龙","id":"5e81ffe1-084f-4afe-a056-f528d52c9c6e","originalAuthorName":"张海龙"},{"authorName":"孙军","id":"e53894da-b0a2-4a48-bab5-a96820660ccd","originalAuthorName":"孙军"}],"categoryName":"|","doi":"","fpage":"239","id":"7fbf172d-dd02-47bd-8d9d-80429148ee52","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"730d3549-d503-4af2-b444-11a8094ba56d","keyword":"内部疲劳微裂纹","originalKeyword":"内部疲劳微裂纹"},{"id":"caba9bd8-5d42-4a13-9623-100fbe6020f5","keyword":"null","originalKeyword":"null"},{"id":"0478d326-b3d2-4204-9673-136d48f2cd4e","keyword":"null","originalKeyword":"null"},{"id":"44c51748-dfc3-4cc7-ab67-32bf14ba2aa0","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_3_19","title":"工业纯铁内部疲劳微裂纹扩散愈合过程中的形态演变","volume":"38","year":"2002"},{"abstractinfo":"采用熔铸法制备自生颗粒增强钛基复合材料.利用SEM,EDA,TEM,XRD等手段,系统研究了增强相形态、尺寸、分布及其形成机制.结果表明,合金基体为α-Ti时,碳化物为单相TiC,其形态随着碳含量的增加依次呈羽毛状或麦穗状、颗粒状或短棒状、粗大的枝晶状;当合金中铝含量增加时,溶体中TiC通过包共晶转变,开始析出Ti3AlC相.碳含量低时形成单相Ti3AlC;碳含量增加时,由于Al扩散限制,形成TiC为芯、Ti3AlC为包覆层的双层结构颗粒,形态上呈颗粒状或树枝晶状;当合金中铝含量进一步增加时,碳化物转变为单相片状Ti2AlC.","authors":[{"authorName":"金云学","id":"2eec78ab-de0d-417a-9f8a-7cfd553fd6b3","originalAuthorName":"金云学"},{"authorName":"李俊刚","id":"d219cd94-60de-43b5-998c-5a5fa84e1e1b","originalAuthorName":"李俊刚"}],"doi":"","fpage":"1157","id":"79ea53f0-e3cc-4bed-a54f-17b677531de5","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"10e59e80-f29a-445b-a47f-46fc8dd97c4f","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"94ce9f06-78d3-4640-8bf1-c119664caa31","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"cd57cc00-8115-475b-acaf-f30ce83952bc","keyword":"碳化物","originalKeyword":"碳化物"},{"id":"63b94d38-1201-4e8b-96e2-ff5cf7acc24d","keyword":"形态","originalKeyword":"形态"},{"id":"420d7921-9cba-43f2-9ea8-cdc8696716c2","keyword":"机制","originalKeyword":"机制"}],"language":"zh","publisherId":"xyjsclygc200707007","title":"钛合金中碳化物组成及形态的演变机制","volume":"36","year":"2007"},{"abstractinfo":"通过冷拉变形结合中间退火的方法把Cu-Cr双相合金制备成纤维增强原位复合材料,用扫描电镜和高分辨透射电镜观察Cu-Cr双相合金在不同应变量下的组织形态变化.结果表明,随着应变量的增大,在垂直于拉拔方向上等轴状Cu相晶粒逐步细化,粒状Cr相晶粒逐步变薄,成为弯曲、扭折的薄片状;在平行于拉拔方向上Cu相与Cr相均逐渐伸长成纤维状.纵、横截面综合来看,Cu-Cr双相合金经冷拉变形后转变为丝状Cu纤维和丝带状Cr纤维的复合材料.Cu-Cr两相界面匹配关系为(111)Cu//(011)Cr,为共格或半共格界面;当应变量η=6.4时,纤维的长轴方向//[111]Cu//[011]Cr//拉拔轴.变形过程中Cu纤维形成了<111>织构,Cr纤维形成了<011>织构.","authors":[{"authorName":"李炎","id":"eb6de2a2-8992-4504-9ca4-d8e9584b4594","originalAuthorName":"李炎"},{"authorName":"陈小红","id":"e9d93721-7bc0-401b-8175-7ce7ac3ab9fd","originalAuthorName":"陈小红"},{"authorName":"刘平","id":"1a0109f5-cb7f-41c7-bd86-6c28452c3eb2","originalAuthorName":"刘平"},{"authorName":"高林华","id":"c9b03220-0cab-4d56-a996-d62803a08ed9","originalAuthorName":"高林华"},{"authorName":"田保红","id":"8b5750b5-a958-49a9-8f55-59e03fc123ba","originalAuthorName":"田保红"}],"doi":"","fpage":"86","id":"b1d846cc-fddb-4d63-bc7a-8c4bfe47c693","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"16c62333-7cd0-4149-8333-35cc98f8692e","keyword":"冷拉变形","originalKeyword":"冷拉变形"},{"id":"107725f5-f5a1-4751-9fca-b7c999891b99","keyword":"组织形态","originalKeyword":"组织形态"},{"id":"e27b8ed4-da95-4da1-a049-3c2cb87a31ce","keyword":"界面关系","originalKeyword":"界面关系"},{"id":"caf1d0d2-1863-4002-93f1-db05978141a6","keyword":"织构","originalKeyword":"织构"},{"id":"630df2b5-bdd0-4971-9854-7a1f121d7573","keyword":"铜-铬合金","originalKeyword":"铜-铬合金"}],"language":"zh","publisherId":"jsrclxb201102018","title":"冷拉变形铜-铬双相合金的组织形态演变","volume":"32","year":"2011"},{"abstractinfo":"研究了1253K,350MPa拉伸蠕变过程中[001],[110]和[111]取向镍基单晶高温合金CMSX-4基体相γ和析出相γ’的演变方式及相尺寸的变化规律比较了不同取向单晶试样中γ和γ’特征尺寸的变化对蠕变应变量和应变速率的影响结果表明,沿γ’定向粗化方向上γ基体通道宽度(即相邻γ’的间距)的变化速率对蠕变应变量和应变速率的影响较为明显.根据不同取向试样中γ基体通道的演变规律和塑性变形机制综合分析了蠕变各向异性行为。","authors":[{"authorName":"彭志方","id":"91dd3599-3426-42c2-8368-6f7f5000fcc3","originalAuthorName":"彭志方"},{"authorName":"严演辉","id":"223b39e8-18e0-4f25-b3ad-cd990cf37d88","originalAuthorName":"严演辉"}],"categoryName":"|","doi":"","fpage":"1147","id":"c58f1f25-54bd-4f29-a1a7-1125ff2a5bb4","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4c250ee6-42b2-4c86-a298-035c0dc5189f","keyword":"镍基单晶高温合金","originalKeyword":"镍基单晶高温合金"},{"id":"d77b9d2a-99c1-4bb0-beb8-bd4b53afd452","keyword":"high-temperature creep","originalKeyword":"high-temperature creep"},{"id":"1407debc-0b2d-40fc-a094-3d7c945d2ef9","keyword":"matrix channel","originalKeyword":"matrix channel"},{"id":"904e32b9-d3e2-41e0-9e94-68f75d6eb6c1","keyword":"anisotropy","originalKeyword":"anisotropy"}],"language":"zh","publisherId":"0412-1961_1997_11_10","title":"镍基单晶高温合金CMSX-4相形态演变及蠕变各向异性","volume":"33","year":"1997"}],"totalpage":869,"totalrecord":8686}