{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"简略介绍了人工神经网络的基本思想及特点,综述了人工神经网络在材料性能预测、工艺参数优化、相变规律的研究、微观组织模拟等领域的应用情况.对人工神经网络研究中存在的问题进行了分析,展望了其应用前景.","authors":[{"authorName":"赖静","id":"789d1363-8cb1-457c-81ba-3257d59af78e","originalAuthorName":"赖静"},{"authorName":"王清","id":"2e44c95e-e141-49af-8b16-58af159b2aa5","originalAuthorName":"王清"},{"authorName":"孙东立","id":"99381c44-1bc5-42e7-89b3-757de8f825b7","originalAuthorName":"孙东立"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.121","fpage":"458","id":"7f0a71a9-ab61-4bdb-9299-44d9808aa7e5","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c117048d-1982-4342-9138-0137871b3a85","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"5626655d-c84d-410a-afae-b0532c5886dc","keyword":"性能","originalKeyword":"性能"},{"id":"a4c88884-ac9a-4a49-a2d7-1cb3e0889ec9","keyword":"工艺","originalKeyword":"工艺"},{"id":"e1723322-039d-427c-a5fb-70f5e105af2e","keyword":"相变","originalKeyword":"相变"},{"id":"46e7c5d0-2f30-4633-8895-20dc3d5801ca","keyword":"组织模拟","originalKeyword":"组织模拟"}],"language":"zh","publisherId":"clgc2006z1121","title":"人工神经网络在材料研究中的应用","volume":"","year":"2006"},{"abstractinfo":"简要介绍几种人工神经网络转炉炼钢终点预报模型,通过分析指出神经网络将在炼钢生产过程中得到广泛的应用.","authors":[{"authorName":"王登峰","id":"33892757-755e-4d9b-863a-6e2f2f9395a8","originalAuthorName":"王登峰"},{"authorName":"倪红卫","id":"e60e0d3c-11e0-4868-a8a0-f17e6cd559fb","originalAuthorName":"倪红卫"}],"doi":"10.3969/j.issn.1001-1447.2005.02.008","fpage":"27","id":"d958fb48-ff5a-4f9e-888d-7c69deebe2c0","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"b07a31af-15bb-4e41-8fb3-363ba88f1346","keyword":"转炉炼钢","originalKeyword":"转炉炼钢"},{"id":"e6b58d06-a59f-4d84-89e3-7ff3f8d0659f","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"535aa5a0-06ce-4338-b11e-ff8e23140895","keyword":"终点预报","originalKeyword":"终点预报"},{"id":"f5670002-ccbd-4cab-bb08-530e38571920","keyword":"命中率","originalKeyword":"命中率"}],"language":"zh","publisherId":"gtyj200502008","title":"人工神经网络在转炉炼钢终点预报中的应用研究","volume":"33","year":"2005"},{"abstractinfo":"无缝钢管张力减径是多机架机组对荒管进行无芯棒连轧过程.它具有复杂的金属流动状态,影响其精度的工艺参数较多,难以用现有轧制理论进行分析.应用人工神经网络的BP算法,对不同坯料样本进行训练学习,确定其权值和阈值,建立起预测管材精度的数学模型.经试验证明该模型具有较高的可靠性和精度.","authors":[{"authorName":"双远华","id":"2f84a9c5-0bbb-4ef0-80a3-7ab3170e498b","originalAuthorName":"双远华"},{"authorName":"樊建成","id":"ad7d8407-3420-47b2-8484-db9d1b713bbe","originalAuthorName":"樊建成"},{"authorName":"赖明道","id":"e725f02b-d891-4e30-9869-1529ba868da1","originalAuthorName":"赖明道"}],"doi":"","fpage":"28","id":"c0c479af-6df7-407e-b20b-30138cde6c5a","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"9ddb8c99-faf0-4862-8c6c-3a6e92d77455","keyword":"张力减径","originalKeyword":"张力减径"},{"id":"16120877-6748-41d9-9ef6-0cea4dbfd0c5","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"28769c5d-2acb-4608-9e81-c519601c36ac","keyword":"精度","originalKeyword":"精度"}],"language":"zh","publisherId":"gt200002009","title":"人工神经网络对管材张减精度预测","volume":"35","year":"2000"},{"abstractinfo":"人工神经网络模型已成为材料科学中广泛使用的技术,综述了人工神经网络在材料设计、材料加工的智能控制、材料相变研究和材料性能预测等方面的应用.","authors":[{"authorName":"樊新民","id":"dc1fbe16-cf9c-40de-a1cf-8a29b3fb5b91","originalAuthorName":"樊新民"},{"authorName":"孔见","id":"e8937561-6896-4707-9244-da231739a6f2","originalAuthorName":"孔见"},{"authorName":"金波","id":"5ee7179a-0f32-4728-910b-0c0190d2d91c","originalAuthorName":"金波"}],"doi":"","fpage":"28","id":"54f03110-04cf-483f-96af-c89e66fdb854","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3356809b-0e13-4324-99a6-40bddfd47340","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"58dce7e4-712a-4f5b-9bd0-94fde366eb5d","keyword":"材料科学","originalKeyword":"材料科学"},{"id":"76424353-af59-46c5-a2ab-d84bbd8b55fc","keyword":"计算机应用","originalKeyword":"计算机应用"}],"language":"zh","publisherId":"cldb200204008","title":"人工神经网络在材料科学研究中的应用","volume":"16","year":"2002"},{"abstractinfo":"介绍了人工神经网络在炼钢生产上的应用,指出利用人工神经网络原理建立预报模型是一种容错性好、通用性强的可靠预报方法.","authors":[{"authorName":"吕俊杰","id":"24e4642b-20fa-4595-b6e9-44071ce18061","originalAuthorName":"吕俊杰"},{"authorName":"雷亚","id":"811c31e2-1302-4d6b-ab7a-7f6e96257648","originalAuthorName":"雷亚"}],"doi":"10.3969/j.issn.1006-9356.2004.06.008","fpage":"34","id":"b738e092-fb61-4538-bde6-2b08613518b8","issue":"6","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"0466a577-4879-49a3-b1d3-48a9766a8753","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"28e14dd5-6a1b-4cfd-be16-099d31bd2c11","keyword":"炼钢","originalKeyword":"炼钢"},{"id":"0013d5e3-14e0-4647-99e6-27a9f070c1a1","keyword":"预报模型","originalKeyword":"预报模型"}],"language":"zh","publisherId":"zgyj200406008","title":"人工神经网络在炼钢生产上的应用","volume":"","year":"2004"},{"abstractinfo":"选取了几种常用的金属氧化物掺杂剂,在均匀实验结构的基础上用人工神经网络方法对掺杂PZT陶瓷的性能进行分析和优化.实验结果表明,掺杂PZT体系的人工神经网络模型要比多重非线形回归模型准确得多,而且以人工神经网络模型为指导对材料进行优化后的性能预测也比较准确,说明人工神经网络在陶瓷这种多组分固溶体材料的性能分析中具有良好的使用前景.","authors":[{"authorName":"郭栋","id":"b2042f37-bdf7-4811-8c62-989fcf0aa1f7","originalAuthorName":"郭栋"},{"authorName":"齐西伟","id":"12af3be6-c565-4c6b-b092-0cff0fbaa77c","originalAuthorName":"齐西伟"},{"authorName":"李龙土","id":"b4fb0d8b-271f-4ec7-95cc-747a44ff17fe","originalAuthorName":"李龙土"},{"authorName":"南策文","id":"0feb07af-45d9-4d2f-9e9f-5fc57abb4204","originalAuthorName":"南策文"},{"authorName":"桂治轮","id":"2b63c4a8-d3d4-48ab-8874-20aa14add85e","originalAuthorName":"桂治轮"}],"doi":"10.3321/j.issn:1000-324X.2004.01.036","fpage":"223","id":"361995be-18fe-413a-9ea1-8b1231ac7ae5","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"50ad7a71-5e97-400e-a69f-21dd14fc9e2d","keyword":"压电陶瓷","originalKeyword":"压电陶瓷"},{"id":"26f3352b-222b-4f2f-88d1-fabb85a95ad3","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"0eca7d23-45dd-43dd-b103-2118b5fd6278","keyword":"误差反向传播算法","originalKeyword":"误差反向传播算法"},{"id":"ea0fb2b1-484a-47b1-ac8c-3486e329e6cf","keyword":"电学性能","originalKeyword":"电学性能"}],"language":"zh","publisherId":"wjclxb200401036","title":"用人工神经网络对PZT陶瓷进行性能分析与优化","volume":"19","year":"2004"},{"abstractinfo":"采用人工神经网络技术建立了碳钢、低合金钢大气腐蚀预测模型,神经网络拓朴结构为13-19-1,神经网络模型预测结果和实验数据紧密相符,而且通过单一因素敏感性分析方法,研究了合金元素和环境因素对于大气腐蚀速率的影响,表明该方法的有效性.","authors":[{"authorName":"王海涛","id":"f27aeb1e-aa3a-4d9c-ac07-bcefabac34b5","originalAuthorName":"王海涛"},{"authorName":"韩恩厚","id":"484eb7f0-5df8-4c69-a380-a1bdbcf10ae3","originalAuthorName":"韩恩厚"},{"authorName":"柯伟","id":"ad9abf90-5aec-4450-885c-3c591f0615e1","originalAuthorName":"柯伟"}],"doi":"10.3969/j.issn.1002-6495.2006.02.019","fpage":"144","id":"782a26bf-28ae-4b83-9040-8d67adaad84b","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"05dcfeea-152c-4c4b-be88-9df8e3a43ca3","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"fa5c6a6c-5453-4e03-9e44-7b8c711002d7","keyword":"大气腐蚀","originalKeyword":"大气腐蚀"},{"id":"7fc79934-131c-458b-a9c5-8847d7d8c516","keyword":"模型","originalKeyword":"模型"},{"id":"24c10c75-4a64-4179-bd9c-2b80c522b07a","keyword":"敏感性分析","originalKeyword":"敏感性分析"}],"language":"zh","publisherId":"fskxyfhjs200602019","title":"用人工神经网络构建碳钢、低合金钢大气腐蚀模型","volume":"18","year":"2006"},{"abstractinfo":"人工神经网络技术广泛应用于复杂系统的建模中,已成为材料科学研究中常用的建模方法.介绍了BP神经网络及其建模的重要特征,综述了神经网络技术在材料性能预测方面的研究情况.","authors":[{"authorName":"徐文峰","id":"b3a98bff-3461-4651-b13f-2267a8b907a3","originalAuthorName":"徐文峰"},{"authorName":"廖晓玲","id":"796e55fc-5f39-41a4-8c2d-de3e39a51c07","originalAuthorName":"廖晓玲"},{"authorName":"刘希东","id":"ab48b26e-f912-44ec-aac7-3596e9768638","originalAuthorName":"刘希东"}],"doi":"","fpage":"237","id":"77f6e950-edcf-4b89-ad86-409ffc906bc7","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8d81d008-91dd-4770-af84-fb982c1a4f6c","keyword":"材料","originalKeyword":"材料"},{"id":"7855dfa4-5c3f-4e9e-8feb-e298c56cd878","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"1a558ea5-2971-44e7-867f-f6d7bbc6ea3b","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb2006z2070","title":"人工神经网络在材料性能研究中的应用","volume":"20","year":"2006"},{"abstractinfo":"人工神经网络具有非线性的自适应信息处理能力,已广泛应用于化工、通信、控制及优化等领域.在简单介绍人工神经网络方法的基础上,重点综述了该方法在陶瓷工业的原料分类、配方优化、缺陷分析、性能预测等方面的应用情况,指出在应用过程中可能存在的问题以及未来的发展趋势.","authors":[{"authorName":"黄国兴","id":"d53002c5-20aa-45be-8fe4-4bb4b74b0514","originalAuthorName":"黄国兴"},{"authorName":"李琳","id":"023e861b-59b8-4a52-a7d5-0acc2b2c64ae","originalAuthorName":"李琳"},{"authorName":"李冰","id":"0bea6499-c118-4676-b3be-8341ef1acac5","originalAuthorName":"李冰"},{"authorName":"陈玲","id":"e43c3d26-4edf-4a44-b85a-239afabcbfe8","originalAuthorName":"陈玲"},{"authorName":"李坚斌","id":"92bb10b6-a84a-4702-8c9e-f0e6c34909d2","originalAuthorName":"李坚斌"}],"doi":"","fpage":"80","id":"1da8e30c-dad7-45e3-87a8-6f6262ac8dbc","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7af1ee4b-38a9-4634-a9fd-04bd5ce5d437","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"49f1d7c4-af67-4024-b9a5-df22746fa75b","keyword":"材料制备","originalKeyword":"材料制备"},{"id":"99b3b15b-9820-4136-ad5c-2b231426ddfb","keyword":"陶瓷工业","originalKeyword":"陶瓷工业"},{"id":"46730c36-f1a8-4764-8923-3059cad25941","keyword":"配方优化","originalKeyword":"配方优化"},{"id":"df18632e-02f8-41ff-81e1-2467ada5a68c","keyword":"性能预测","originalKeyword":"性能预测"}],"language":"zh","publisherId":"cldb200611022","title":"人工神经网络在材料制备工业中的应用","volume":"20","year":"2006"},{"abstractinfo":"以现场正交试验数据为基础,采用人工神经网络方法预测高碳钢高速线材产品力学性能,将预报结果与试验结果相比较可知,该模型具有较高的精度.","authors":[{"authorName":"芮小艳","id":"64e3af4a-7eda-40bc-a99a-7d56afa4aecc","originalAuthorName":"芮小艳"}],"doi":"10.3969/j.issn.1001-1447.2000.05.009","fpage":"29","id":"557913a2-d2de-4d8d-b5cf-044c90a33257","issue":"5","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"2fee5509-16cd-4a39-9ffa-6598789d25f6","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"8023a492-3070-4df0-8666-04d486e8078d","keyword":"控制冷却","originalKeyword":"控制冷却"},{"id":"72945fa9-f513-4442-a347-aa973d2c9f4f","keyword":"高碳钢","originalKeyword":"高碳钢"},{"id":"91e5f402-5fa7-47ed-9fc2-f1ae9d541a40","keyword":"高速线材","originalKeyword":"高速线材"}],"language":"zh","publisherId":"gtyj200005009","title":"用人工神经网络模型预测高碳钢高速线材力学性能","volume":"","year":"2000"}],"totalpage":432,"totalrecord":4312}