{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"化学反应中聚合物流变动力学是联系化学反应动力学与聚合物流变学的交叉学科中的一类重要科学问题.文中从单体聚合、树脂固化、聚合物之间的反应以及聚合物接枝反应四方面综述了近年来聚合物流变动力学的研究进展,分析了尚存在的难点,并展望了其发展方向.","authors":[{"authorName":"刘萌戈","id":"9d437059-e8df-4792-803b-be904028964f","originalAuthorName":"刘萌戈"},{"authorName":"周持兴","id":"b82d0903-036c-474c-b2c0-09d1381a5faf","originalAuthorName":"周持兴"}],"doi":"","fpage":"42","id":"2cdd13de-860f-4657-9595-e7a100ef92c6","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3a4565ff-216e-48e5-82bc-2929716ac436","keyword":"聚合物流变学","originalKeyword":"聚合物流变学"},{"id":"f6e3aba8-221a-4535-86cb-6fb85f0bc5f4","keyword":"化学流变学","originalKeyword":"化学流变学"},{"id":"be206a8e-c527-465e-9d0a-98578f82239c","keyword":"流变动力学","originalKeyword":"流变动力学"}],"language":"zh","publisherId":"gfzclkxygc200504010","title":"化学反应中聚合物流变动力学的研究进展","volume":"21","year":"2005"},{"abstractinfo":"非晶合金在外力场的作用下会出现间接性的锯齿流,锯齿具有空间和时间的无序分布性,能够反映塑性变形过程中剪切带的演化过程.借助于混沌理论、自组织临界理论、统计分析、分形和平均场理论等数学方法进行了锯齿动力学研究.发现非晶合金的塑性流变行为与材料的本征结构、试样尺寸、加载试验机的刚度、温度和应变速率等密切相关,揭示了非晶合金的塑性变形过程中剪切带滑移不稳定性的演化特点.试样尺寸小、低温或高应变速率下加载的韧性非晶试样的塑性流变动力学呈现类自组织临界状态,锯齿的幅值分布具有无标度性特点,剪切带之间的交互作用强,剪切带过程相对稳定.低温下大的分形维数说明剪切带分叉速率快,触发了剪切带之间的交互作用.简单的平均场理论证实了非晶合金的塑性可受应变速率调控.这些结论为进一步探索非晶合金的塑性提供了新的思路.","authors":[{"authorName":"乔珺威","id":"b896e6f9-54ee-4cc4-8580-d179c5ab5c0e","originalAuthorName":"乔珺威"},{"authorName":"李娇娇","id":"45702ba2-364f-4f9d-836b-08ab119bcfe8","originalAuthorName":"李娇娇"},{"authorName":"王重","id":"0cd6ced5-f3e2-4546-814a-d788385ab747","originalAuthorName":"王重"}],"doi":"10.7502/j.issn.1674-3962.2017.03.07","fpage":"200","id":"d7a35257-71ff-43f0-82b0-063a3f224241","issue":"3","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"618b79a8-3d6c-49b8-b0b5-bdf928687749","keyword":"非晶合金","originalKeyword":"非晶合金"},{"id":"6684cd9d-58d8-4c4a-b29a-6fcc5b3d141d","keyword":"锯齿流变","originalKeyword":"锯齿流变"},{"id":"de132f88-13fb-42ed-aeb9-37427cc45370","keyword":"剪切带","originalKeyword":"剪切带"},{"id":"6dd29973-07e3-4587-8210-651fb2f63a11","keyword":"本征结构","originalKeyword":"本征结构"},{"id":"eb496fad-cccd-450e-a612-b6f87c236de5","keyword":"试样尺寸","originalKeyword":"试样尺寸"},{"id":"3c5bed3a-3c40-47b7-a4bd-d693956a6498","keyword":"加载条件","originalKeyword":"加载条件"}],"language":"zh","publisherId":"zgcljz201703008","title":"非晶合金中锯齿流变动力学的研究","volume":"36","year":"2017"},{"abstractinfo":"通过对热轧态Cu-2.5%Fe-0.03%P-0.1%Zn合金时效过程中的导电率与析出相体积分数之间的关系研究了该合金的相变动力学.以不同温度时效时的导电率试验数据可确定该合金的相变动力学方程的系数,从而描绘出不同温度时效时的相变动力学\"S\"曲线以及合金等温转变TTT曲线.","authors":[{"authorName":"陈彬","id":"70d57496-bf23-425e-bca1-da8309d23a9a","originalAuthorName":"陈彬"},{"authorName":"董企铭","id":"df5bb03f-49b2-4c44-815c-61a7fdddaf0e","originalAuthorName":"董企铭"},{"authorName":"康布喜","id":"8862a1a1-85bf-492c-a4ed-8c96cfb58351","originalAuthorName":"康布喜"},{"authorName":"刘平","id":"42caf366-ecc6-4773-a72a-8b4aa374b28c","originalAuthorName":"刘平"},{"authorName":"田保红","id":"fb8a0c1e-c238-4195-bfd0-faefd6492d2d","originalAuthorName":"田保红"},{"authorName":"黄金亮","id":"09b26b6e-7e82-4495-8647-b5827e646f84","originalAuthorName":"黄金亮"}],"doi":"10.3969/j.issn.1001-7208.2004.02.004","fpage":"12","id":"09bf1a92-3baf-494b-a480-c67e3b88f552","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"de11f850-372a-43a6-b0d1-6ebee79e877f","keyword":"Cu-Fe-P合金","originalKeyword":"Cu-Fe-P合金"},{"id":"4b3640bf-e964-4d62-844e-18c5abc8021c","keyword":"时效处理","originalKeyword":"时效处理"},{"id":"50bd3166-20c7-4d94-a200-547ddd39eb7c","keyword":"导电率","originalKeyword":"导电率"},{"id":"f3dada14-aa53-4210-b830-420dd110a4a8","keyword":"体积分数","originalKeyword":"体积分数"},{"id":"b7b49ff3-8def-479b-877e-8ca92bc13680","keyword":"相变动力学","originalKeyword":"相变动力学"}],"language":"zh","publisherId":"shjs200402004","title":"热轧态Cu-Fe-P合金的相变动力学研究","volume":"26","year":"2004"},{"abstractinfo":"采用井式渗碳炉和Gleeble3500型热模拟试验机测试了4种不同铝含量贝氏体钢的渗碳动力学和贝氏体相变动力学,研究了铝含量对其渗碳及贝氏体相变动力学的影响。结果表明:该钢的渗碳动力学方程为ξ=e(11.3-Q/RT)τ0.5,改变钢中铝含量对钢的渗碳动力学没有明显影响;随钢中铝含量增加,其贝氏体相变驱动力增大,使贝氏体转变加快,CCT曲线向左上方移动。","authors":[{"authorName":"闫志刚","id":"42879ee3-ac3a-4127-b779-50457c8411da","originalAuthorName":"闫志刚"},{"authorName":"张福成","id":"cbf42bcf-398d-4438-95c5-db0c551009b2","originalAuthorName":"张福成"},{"authorName":"张朋","id":"9f2178f7-6033-42cf-b0b4-caa8d11c061c","originalAuthorName":"张朋"},{"authorName":"郑春雷","id":"4d0852db-f5a4-43e4-85a2-06d90fc13846","originalAuthorName":"郑春雷"},{"authorName":"刘峰超","id":"dfd0fa3c-78b2-4088-aa70-7a3dacdeba57","originalAuthorName":"刘峰超"},{"authorName":"张明","id":"a328a8bc-a5ef-4bd4-bf5e-3ffc3e55312e","originalAuthorName":"张明"}],"doi":"","fpage":"31","id":"c9d11fb6-39db-447b-8af1-2c4f50e5e246","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"c072c310-f3ca-4a51-9072-7dc383759aeb","keyword":"渗碳","originalKeyword":"渗碳"},{"id":"987cb570-e3d7-4f04-954f-ab35d36e0b7f","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"d3360c8b-5e70-4474-8245-b811ce4edb22","keyword":"相变","originalKeyword":"相变"},{"id":"61ef8dc7-08fe-4baf-873a-2687e2edd648","keyword":"铝","originalKeyword":"铝"},{"id":"86726104-866b-4435-ac70-e1b317544268","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"jxgccl201201007","title":"铝含量对钢渗碳动力学和贝氏体相变动力学的影响","volume":"36","year":"2012"},{"abstractinfo":"通过测量固溶态Cu-Ni-Si合金的导电率变化研究了该合金的相变动力学,并由合金导电率与新相体积分数之间的线性关系,确定了该合金固溶及其60%变形态于550℃时效时的相变动力学方程.","authors":[{"authorName":"王东锋","id":"7caaaf20-4d87-45ba-bbdd-eb1f22937e52","originalAuthorName":"王东锋"},{"authorName":"康布熙","id":"b7ea05cf-e585-4572-b301-7e9e3b2e6e1b","originalAuthorName":"康布熙"},{"authorName":"刘平","id":"17996dc7-b2bb-48f7-8dd2-ea0ddc376f77","originalAuthorName":"刘平"},{"authorName":"田保红","id":"4a71e27d-065a-43ad-b832-dd13291d8d67","originalAuthorName":"田保红"},{"authorName":"黄金亮","id":"4ceb98d3-5b82-4c80-a1ce-53c3916625f3","originalAuthorName":"黄金亮"}],"doi":"10.3969/j.issn.1003-1545.2003.05.001","fpage":"1","id":"ed13bf1a-e8d2-4c5c-9257-0889a9909908","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"ac3649eb-b23f-453d-83a6-04cd6562347c","keyword":"时效","originalKeyword":"时效"},{"id":"309a7da8-d788-4025-9473-d504feeafcfe","keyword":"固溶","originalKeyword":"固溶"},{"id":"58ed531d-c722-473c-8255-99475bf33a4b","keyword":"导电率","originalKeyword":"导电率"},{"id":"9c747071-052a-409f-a036-02392cb97f80","keyword":"相变","originalKeyword":"相变"},{"id":"95c72b35-f741-4d18-93c2-19b996cca69c","keyword":"体积分数","originalKeyword":"体积分数"}],"language":"zh","publisherId":"clkfyyy200305001","title":"固溶态Cu-Ni-Si合金的相变动力学","volume":"18","year":"2003"},{"abstractinfo":"基于马氏体体积分数对温度偏微分与自由能差对温度偏微分呈线性关系的事实,提出一种新的马氏体相变动力学模型,通过与其它马氏体相变动力学模型比较,并应用于复合材料模型中,表明本模型与实验结果十分吻合.","authors":[{"authorName":"郑雁军","id":"c8187468-3438-479b-b15e-910e04e8ccf7","originalAuthorName":"郑雁军"},{"authorName":"崔立山","id":"9c8354ef-b2fc-4109-bc5e-fb6411aa8c17","originalAuthorName":"崔立山"},{"authorName":"杨大智","id":"c81d4551-55f9-4b23-a9e8-3839bb3175ab","originalAuthorName":"杨大智"}],"doi":"10.3321/j.issn:1000-3851.2000.01.018","fpage":"81","id":"923f4158-5c9b-4809-b778-988eeadbe2cd","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"987ffe59-3ef6-495f-91e7-0f9bf1d57558","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"fea5426b-e3a0-4016-8c27-b0c19cebc6c8","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"28aab9b3-61e7-460d-b335-9f8c4926512b","keyword":"动力学模型","originalKeyword":"动力学模型"}],"language":"zh","publisherId":"fhclxb200001018","title":"形状记忆合金马氏体相变动力学模型","volume":"17","year":"2000"},{"abstractinfo":"通过膨胀试验测定了X12CrMoWVNbN10-1-1铁索体耐热钢连续加热过程相变动力学曲线(CHT),根据等温转变动力学与连续转变动力学之间的关系将CHT曲线转换为等温加热相变动力学曲线(IHT);采用定量金相法测定X12CrMoWVNbN10-1-1铁素体耐热钢以30℃/h加热至1070℃保温12h的过冷奥氏体经过不同温度等温转变的转变量与等温时间的关系,根据试验结果求解出修正的Avrami方程中的系数,并绘制出这种奥氏体化条件下的过冷奥氏体等温转变动力学曲线(TTT).","authors":[{"authorName":"韩利战","id":"2f752246-332b-463f-8450-78e4d41d639a","originalAuthorName":"韩利战"},{"authorName":"顾剑锋","id":"74307e7f-43dc-4e4c-b043-16f4c42e919d","originalAuthorName":"顾剑锋"},{"authorName":"潘健生","id":"4cab46bd-1c8b-4976-ac74-4bf3ac294bb4","originalAuthorName":"潘健生"}],"doi":"","fpage":"35","id":"c5951350-5bfb-4d27-aac7-c187ab6453b8","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"ebe8664e-fc78-4ec0-a20e-79b381a1d093","keyword":"超超临界转子钢","originalKeyword":"超超临界转子钢"},{"id":"4288201d-a30f-4e46-b68f-76be589e9424","keyword":"等温相变动力学曲线","originalKeyword":"等温相变动力学曲线"},{"id":"7f95fd56-a587-426d-ab08-294f419001aa","keyword":"Avrami方程","originalKeyword":"Avrami方程"}],"language":"zh","publisherId":"jsrclxb201001007","title":"超超临界转子钢X12CrMoWVNbN10-1-1的等温转变动力学","volume":"31","year":"2010"},{"abstractinfo":"奥氏体预变形影响后续贝氏体相变,采用SEM、膨胀法和XRD衍射分析等实验方法,研究了奥氏体预变形对等温贝氏体相变动力学的影响规律.结果表明,300℃变形25%加速贝氏体相变,且贝氏体最终转量增多,室温组织中残留奥氏体量与贝氏体转变量相关,随贝氏体转变量增大而增多,变形对等温贝氏体相变的影响与变形温度和变形程度有关.此外,首次提出了变形条件下贝氏体相变动力学Avrami修正模型,为下一步系统建立变形条件下贝氏体相变动力学模型提供了参考.本文的结果为缩短高强塑积无碳化物贝氏体钢生产时间提供了有效途径.","authors":[{"authorName":"胡海江","id":"86ea6cbc-241f-4765-aca1-eb214ee3f8e4","originalAuthorName":"胡海江"},{"authorName":"徐光","id":"f663433b-a7c7-43cd-8c8e-74fe70362980","originalAuthorName":"徐光"},{"authorName":"张玉龙","id":"cb6c17f6-08c9-46ba-bdaf-51d689e26e4c","originalAuthorName":"张玉龙"},{"authorName":"周明星","id":"bd171ea4-fe0a-42da-a99f-cbb51facdb91","originalAuthorName":"周明星"}],"doi":"","fpage":"247","id":"3e217989-cc6e-46c5-bf1b-08af7554c740","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"947285cd-d7ee-468f-bb42-ca99f73d4761","keyword":"变形","originalKeyword":"变形"},{"id":"8e7fdbbe-695e-4a00-b483-17e3316a9935","keyword":"相变动力学","originalKeyword":"相变动力学"},{"id":"891adc7a-a367-4cfc-b0bc-52c756a231ba","keyword":"组织","originalKeyword":"组织"},{"id":"ea7d4187-d62f-4a37-851c-a8cd214e3e8c","keyword":"膨胀量","originalKeyword":"膨胀量"}],"language":"zh","publisherId":"jsrclxb201512042","title":"变形对贝氏体钢等温相变动力学影响","volume":"36","year":"2015"},{"abstractinfo":"简要综述了中高能重离子碰撞中K介子的产生及研究进展。重点介绍了K介子协变动力学模型,并在此框架内分析了中高能重离子碰撞中K+介子以及与其伴随产生的Λ超子的集体流特征。结果表明:协变动力学模型能够很好地给出K+介子和Λ超子的微分直接流。相对而言,软势给出的集体流与实验值符合更好。同时,通过对不同输运模型中K介子准粒子模型的基本属性进行对比分析,明确了协变动力学模型中K介子准粒子模型的质量及能量随核物质密度的变化特征,以及周围核子的运动对于K介子基本属性的影响。","authors":[{"authorName":"王艳艳","id":"349db626-5022-44aa-b8a7-f8039ec5a312","originalAuthorName":"王艳艳"},{"authorName":"朱玉兰","id":"5d3dc1a8-160a-42ca-9637-eed714772e32","originalAuthorName":"朱玉兰"},{"authorName":"邢永忠","id":"bbe2620b-41c4-4b05-ac91-14392f07dee0","originalAuthorName":"邢永忠"},{"authorName":"郑玉明","id":"71800e59-a30c-4f6c-bc98-43e989de9d39","originalAuthorName":"郑玉明"}],"doi":"","fpage":"408","id":"de37f477-4138-47b2-b482-e04c4d1eff69","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"877d6d27-669b-4cdc-8afd-123e6c22f8cc","keyword":"K介子","originalKeyword":"K介子"},{"id":"c4209eab-ee16-49be-9cd4-421f76cdda36","keyword":"协变动力学","originalKeyword":"协变动力学"},{"id":"30fab57f-13a7-4dca-b6d6-385cbf53ac75","keyword":"准粒子模型","originalKeyword":"准粒子模型"},{"id":"852e0434-0316-4c50-9b89-a2bcd60e826f","keyword":"基本属性","originalKeyword":"基本属性"}],"language":"zh","publisherId":"yzhwlpl201104005","title":"K介子协变动力学及其准粒子模型的性质","volume":"28","year":"2011"},{"abstractinfo":"依据马氏体含量-温度-应力关系,建立了三维约束下形状记忆合金颗粒相变动力学模型.利用这一模型,根据假设的复合材料中的形状记忆合金颗粒所受的应力状态,可对其相变DSC曲线进行数值模拟,为记忆合金所处的实际应力状态分析提供参考依据.","authors":[{"authorName":"石萍","id":"a1e0a367-f8a5-4f5b-a031-8d7033df3730","originalAuthorName":"石萍"},{"authorName":"杨大智","id":"47e6be2c-bb0b-44e3-a2f3-f5f510ac2fe3","originalAuthorName":"杨大智"},{"authorName":"陈騑騢","id":"dc61d907-e940-49c4-888f-64dc621b1551","originalAuthorName":"陈騑騢"}],"doi":"","fpage":"375","id":"7fc73bdc-8b91-4bde-a7bc-859e6fca3e80","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"52b4483c-82ec-4407-b537-1af64e23393f","keyword":"形状记忆合金颗粒","originalKeyword":"形状记忆合金颗粒"},{"id":"950c9563-e05f-4b5e-8d2a-298ddff964fc","keyword":"约束相变","originalKeyword":"约束相变"},{"id":"da027793-d27d-4ffc-9c9e-a5deab5fb3ff","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"gncl200104013","title":"三维约束下的形状记忆合金相变动力学模拟","volume":"32","year":"2001"}],"totalpage":3231,"totalrecord":32302}