{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用水热法,在没有表面活性剂和有机溶剂的情况下,在一定pH值下合成In(OH)3微米立方。通过在400℃煅烧In(OH)3前驱体,制备In2O3微米立方。所制备的In2O3保持In(OH)3微米立方的结构和形貌,但在煅烧中,由于脱水, In2O3微米立方有轻微的变形。采用X射线衍射仪、扫描电镜和热重分析对所制备样品的相成分、形貌和热性能进行表征。在最佳工作温度275℃下,评估In2O3微米立方对H2、CO、CH4、C2H5OH和CO2的气敏性能。测试结果表明, In2O3微米立方对C2H5OH有良好的气敏性能。最后,对In2O3微米立方的敏感机理进行讨论,可知In2O3微米立方除了作为气敏材料,也可用于微电子和光电子器件材料。","authors":[{"authorName":"刘继江","id":"ffacd61c-3832-47b4-964d-80e2a8b38b41","originalAuthorName":"刘继江"},{"authorName":"陈刚","id":"02f5cfb8-ac76-475d-81ae-2aac9f484462","originalAuthorName":"陈刚"},{"authorName":"于耀光","id":"daabfc4c-6ddd-485c-aeb3-a634c15cef2f","originalAuthorName":"于耀光"},{"authorName":"吴亚林","id":"62f06e24-d218-43bf-8ce4-f95775ceac25","originalAuthorName":"吴亚林"},{"authorName":"周明军","id":"98966c58-492e-4f33-ada1-8238ad692481","originalAuthorName":"周明军"}],"doi":"10.3969/j.issn.1001-9731.2013.Supplement(Ⅱ).029","fpage":"301","id":"df7810d1-6627-43a2-b5eb-90263364de9c","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f5a9f437-0fbb-4ea2-8675-68e273be4020","keyword":"In2O3","originalKeyword":"In2O3"},{"id":"d0948eb2-67b0-48a7-a183-6efa9acbd843","keyword":"In(OH)3","originalKeyword":"In(OH)3"},{"id":"7b7f1653-699c-4ec3-adb3-7a70fa068040","keyword":"微米立方","originalKeyword":"微米立方"},{"id":"faee8a06-388d-434a-923c-f90755c9323a","keyword":"气敏性","originalKeyword":"气敏性"}],"language":"zh","publisherId":"gncl2013z2029","title":"In(OH)3和In2O3微米立方的简易合成及其气敏性能","volume":"","year":"2013"},{"abstractinfo":"利用水溶性高聚物PEG作为制备In(OH)3晶体生长的介质,制备了不同形貌和尺寸的 In(OH)3晶体。随着PEG浓度的增加,粒径呈现减小的趋势,且形貌上由不均一的片状渐变形成均一片状。利用SEM、TEM、XRD和傅立叶红外光谱分别对形貌、尺寸、结构和物相等进行了表征和分析。实验结果表明,在600℃条件下焙烧 In(OH)3晶体可以得到轴向尺寸约为30~50 nm 的短片状纳米 In2 O3,其粒子的尺寸较为均一、分散性较好且具有高的纯度。","authors":[{"authorName":"陈丽萍","id":"5a3ac515-ee8d-4180-a945-a7a7f8010a86","originalAuthorName":"陈丽萍"}],"doi":"10.3969/j.issn.1001-9731.2013.24.017","fpage":"3598","id":"ac0f2415-4ac9-4409-ae45-8f820919a570","issue":"24","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"59db9281-0436-4601-999b-d6f17dfdcc97","keyword":"PEG","originalKeyword":"PEG"},{"id":"33d7e533-8355-4108-970e-38656f122b6a","keyword":"In(OH)3","originalKeyword":"In(OH)3"},{"id":"f6e80e50-9706-4643-b520-3f6710947950","keyword":"纳米片","originalKeyword":"纳米片"},{"id":"5da2c8ee-1108-4cd7-9d8c-3cd4c31faad2","keyword":"In2 O3","originalKeyword":"In2 O3"}],"language":"zh","publisherId":"gncl201324017","title":"高聚物PEG导向制备的In(OH)3和In2 O3纳米材料及其表征","volume":"","year":"2013"},{"abstractinfo":"Thermodynamic analysis of the main reactions in the process of thermal decomposition ofAl(OH)3 was made using Temkin-Schwarzman's method and by means of regression analysis.","authors":[{"authorName":"Wenming ZENG and Nianyi CHEN(Shanghai Institute of Metallurgy Chinese Academy of Sciences","id":"20584d1e-fcf4-4630-b9ae-0200018a7dc1","originalAuthorName":"Wenming ZENG and Nianyi CHEN(Shanghai Institute of Metallurgy Chinese Academy of Sciences"},{"authorName":" Shanghai 200050","id":"b7328bd9-5c39-4ac6-b161-21ce50c350be","originalAuthorName":" Shanghai 200050"},{"authorName":" China)","id":"488fec3c-7cc2-4f9e-83c3-4ba47bd950cb","originalAuthorName":" China)"}],"categoryName":"|","doi":"","fpage":"446","id":"7f5b6d5a-2bcb-45d1-b366-fc33e01cbc94","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[],"language":"en","publisherId":"1005-0302_1997_5_8","title":"Thermodynamic Analysis of Thermal Decomposition of Al(OH)_3","volume":"13","year":"1997"},{"abstractinfo":"化学共沉淀法合成氢氧化镍,并在表面用\"梯度共晶法\"复合包覆Co(OH)x+Yb(OH)3.XRD,XPS,SEM表征结果表明:制备的样品为六方球形β-Ni(OH)2,表面包覆了Co(OH)x+Yb(OH)3,Co的存在形式应该主要为Co2+及少量的Co3+.65℃下0.2C,1C和3c恒电流充放电时,复合包覆Co(OH)x+2%Yb(OH)3的氢氧化镍的放电比容量和放电效率最大.大倍率充放电和循环稳定性等性能也得到改善.","authors":[{"authorName":"赫文秀","id":"7a87783e-148c-4782-b534-4addd151677d","originalAuthorName":"赫文秀"},{"authorName":"安胜利","id":"7f7fc07d-d9e9-4f72-acef-ad24d6b5ed1e","originalAuthorName":"安胜利"},{"authorName":"张永强","id":"659ad607-39fc-4e07-9aae-7d17eda28d07","originalAuthorName":"张永强"},{"authorName":"孙海峰","id":"dbb3d7a7-d2b5-4ef7-b08a-1c52125220b6","originalAuthorName":"孙海峰"},{"authorName":"杨慧","id":"5e1dc390-1ae3-4e1e-b912-5631fcce7aeb","originalAuthorName":"杨慧"},{"authorName":"蒋文全","id":"1cde0e27-9de3-4e92-aa0e-f873b14068a5","originalAuthorName":"蒋文全"}],"doi":"","fpage":"464","id":"ecb49063-bf00-45ef-b85b-a554fbc60a20","issue":"4","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"0d2f22bd-1b02-4e54-a79d-d8fa36f685c8","keyword":"包覆","originalKeyword":"包覆"},{"id":"ac19a66d-3372-4b64-ba5b-f74601f01215","keyword":"放电容量","originalKeyword":"放电容量"},{"id":"1fe7f6e1-5e32-453a-8971-726dce4c97bb","keyword":"循环性能","originalKeyword":"循环性能"},{"id":"6227e086-1360-4049-b47c-5f519fc9c825","keyword":"Yb(OH)3","originalKeyword":"Yb(OH)3"},{"id":"1750f624-918e-4bd2-b953-e0511d8c13e6","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb201004015","title":"复合包覆Co(OH)x+Yb(OH)3的Ni(OH)2正极材料的高温性能研究","volume":"28","year":"2010"},{"abstractinfo":"利用化学共沉淀方法制备了SiC/(Al(OH)3+Y(OH)3)陶瓷复合粉体.研究了pH值对SiC/(Al(OH)3+Y(OH)3)复合粉体的ξ电位和分散性的影响,以及pH值对Al(OH)3和Y(OH)3在SiC表面包覆性的影响.结果表明,当溶液的pH=9时,SiC/(Al(OH)3+Y(OH)3)复合粒子表面的ξ电位值较高,复合粉体的分散性和包覆效果也较好.","authors":[{"authorName":"张宁","id":"1e0a2f75-49b9-4a28-be62-5d6849e72ef3","originalAuthorName":"张宁"},{"authorName":"茹红强","id":"471a9c57-16ef-452a-8098-1496d8e2bc19","originalAuthorName":"茹红强"},{"authorName":"巩甘雷","id":"7c537719-2d8f-49af-b45e-a2b8b71a2338","originalAuthorName":"巩甘雷"},{"authorName":"孙旭东","id":"5a7b9ee4-f35b-4991-beb9-2fd2790d5916","originalAuthorName":"孙旭东"},{"authorName":"夏鸿燕","id":"ebee6c4e-16e9-43e8-a628-944d37a03910","originalAuthorName":"夏鸿燕"}],"doi":"10.3969/j.issn.1671-6620.2002.01.012","fpage":"57","id":"fbc247ff-3d5d-4606-9d52-ca7196a40d23","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"a028486b-b176-4a35-ad4f-2c0a288793fd","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"2a09d2e2-f6d9-405b-9829-af60a25ec292","keyword":"包覆","originalKeyword":"包覆"},{"id":"7e838bf6-1745-4354-aacd-6d4fe805848e","keyword":"SiC/(Al(OH)3+Y(OH)3)","originalKeyword":"SiC/(Al(OH)3+Y(OH)3)"},{"id":"9dfde6d8-3d64-426e-beae-83bb815fd0fe","keyword":"pH值","originalKeyword":"pH值"},{"id":"242c580e-cb37-4e5f-9f6e-400199b2384d","keyword":"ξ电位","originalKeyword":"ξ电位"}],"language":"zh","publisherId":"clyyjxb200201012","title":"pH值对Al(OH)3和Y(OH)3共沉淀包覆SiC颗粒的影响","volume":"1","year":"2002"},{"abstractinfo":"本文采用活化Al-Sr合金粉末水解反应制备Al(OH)3和Sr(OH)2复合粉末,利用XRD,SEM,EDS,BET及激光粒度仪对复合粉末进行结构和性能研究.研究结果表明,Al(OH)3和Sr(OH)2的复合粉末中Sr/Al比例与配比相比有所偏移,但在复合粉末中两者均匀混合,具有化学组成的微观均匀性.复合粉末微观形貌为1~3μm片状小颗粒叠加的团聚颗粒,BET比表面积较大,达到45.2m2/g,水解产物粒度分布均匀,D50为27.58μm,D25/D75为0.76.","authors":[{"authorName":"胡劲","id":"38f1e612-4496-4935-b055-909296d3b189","originalAuthorName":"胡劲"},{"authorName":"孙家林","id":"1008bd03-bf54-4c0f-b325-b02143677b53","originalAuthorName":"孙家林"},{"authorName":"刘建良","id":"86867eb4-c0a6-4263-8415-7eadfa2291f6","originalAuthorName":"刘建良"},{"authorName":"施安","id":"f731acf1-08ed-492f-9c79-27a763dd51c2","originalAuthorName":"施安"},{"authorName":"徐茂","id":"f148345d-a0eb-4b9a-bb37-84587f6acf8c","originalAuthorName":"徐茂"},{"authorName":"高勤琴","id":"02f0f432-4865-46cc-beed-9e655571798d","originalAuthorName":"高勤琴"}],"doi":"10.3969/j.issn.1000-985X.2006.01.016","fpage":"71","id":"bbd54147-1b55-4715-af94-3031c369cb0c","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"852bfb62-9c2f-4dc5-98df-8ea0254eae76","keyword":"Al-Sr合金","originalKeyword":"Al-Sr合金"},{"id":"c70e559f-0b62-4bb1-a5c7-12afa8ecb24a","keyword":"水解","originalKeyword":"水解"},{"id":"fce20487-9d84-4caa-9f93-e616494d6002","keyword":"复合粉末","originalKeyword":"复合粉末"}],"language":"zh","publisherId":"rgjtxb98200601016","title":"Al(OH)3和Sr(OH)2复合粉末的制备及性能研究","volume":"35","year":"2006"},{"abstractinfo":"通过制备纳米级的β-Ni(OH)2粉体然后按一定比例掺杂Al(OH)3和Ni粉制成复合电极,研究其电化学性能. 实验结果表明,其电极结构稳定,活性增强. 开路电位达2.5 V,放电电位平稳,放电容量明显增大. 电极经3.0×10-3 A/cm2恒电流充电5 h后以0.7×10-3 A/cm2恒电流放电可达到16 h.","authors":[{"authorName":"刘长久","id":"be5e29f5-a22e-46b9-b61e-d76e23ed764a","originalAuthorName":"刘长久"},{"authorName":"叶乃清","id":"6c946d14-3e6a-4ef4-a0b2-8697e384ab5b","originalAuthorName":"叶乃清"},{"authorName":"刁汉明","id":"f4454bf1-9a44-423b-839c-5db566bae498","originalAuthorName":"刁汉明"}],"doi":"10.3969/j.issn.1000-0518.2002.05.014","fpage":"468","id":"ce76a124-3aec-4f3b-a80f-3fe125fffb3e","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"00cb1277-43f8-4415-9f12-8564ffc9ae87","keyword":"β-Ni(OH)2,纳米粉体,Al(OH)3掺杂,电化学性能","originalKeyword":"β-Ni(OH)2,纳米粉体,Al(OH)3掺杂,电化学性能"}],"language":"zh","publisherId":"yyhx200205014","title":"纳米级β-Ni(OH)2掺杂Al(OH)3的电化学性能","volume":"19","year":"2002"},{"abstractinfo":"在氢氧化镍表面包覆氢氧化镱和氢氧化钴并用XRD、XPS、SEM和恒电流充放电技术进行表征.结果表明:β-Ni(OH)2为六方晶型,Co的存在形式主要为Co2+及有少量的Co3+.样品表面Co和Ni原子比大于8∶1.65℃下0.2、1和3C恒电流充放电时,表面包覆2%Yb(OH)3的样品放电容量和活性物质利用率最大.65℃时经过30次充放电循环后,在不同的充放电倍率下,表面包覆不同量Yb(OH)3的氢氧化镍的放电循环稳定性和放电容量随着Yb(OH)3含量的增加而增大.","authors":[{"authorName":"赫文秀","id":"e5bb909c-11c8-4a8c-a4df-6a5da4fb3e34","originalAuthorName":"赫文秀"},{"authorName":"安胜利","id":"cb93f4df-d279-4e0f-803f-357125ebbf7f","originalAuthorName":"安胜利"},{"authorName":"张永强","id":"3b6c1868-76ce-43d3-82c8-955bd0636bd4","originalAuthorName":"张永强"},{"authorName":"蒋文全","id":"941ef388-a452-4794-a5d0-4ac4c709c3c6","originalAuthorName":"蒋文全"}],"doi":"","fpage":"1129","id":"3d767846-0463-43ab-961d-2150d6625092","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8b3699c4-e7fb-4431-9a05-feea4adc74cd","keyword":"氢氧化镍","originalKeyword":"氢氧化镍"},{"id":"fb215c97-b344-482d-a196-5edfa229b1ea","keyword":"放电容量","originalKeyword":"放电容量"},{"id":"889ef6b4-5ab8-4d90-98ab-81a0ab2634cd","keyword":"充放电性","originalKeyword":"充放电性"},{"id":"bf2e0088-8dd2-4ab9-99d0-6d81f1846d25","keyword":"氢氧化镱","originalKeyword":"氢氧化镱"}],"language":"zh","publisherId":"xyjsclygc201207001","title":"表面包覆Yb(OH)3的Ni(OH)2正极材料的高温性能研究","volume":"41","year":"2012"},{"abstractinfo":"本文采用共沉淀法优化包裹型Al(OH)3-Y(OH)3/ZrB2复合粉体的合成工艺,通过TEM对合成的复合粉体进行形貌分析,得出适宜的包覆工艺参数分别是pH=9、溶液浓度为Al3+=0.017 moL/L和Y3+ =0.01 mol/L、滴定速度为0.05 ml/s、反应时间为60min.通过优化工艺,可以合成出包裹结构较好的包裹型Al(OH)3-Y(OH)3/ZrB2复合粉体,其包裹层厚度约为150 ~ 300 nm,为改善ZrB2基复合材料难于烧结致密化和高温条件下易氧化奠定原料基础.","authors":[{"authorName":"宋杰光","id":"269f961e-ba4d-424e-a997-b45e732071f0","originalAuthorName":"宋杰光"},{"authorName":"王芳","id":"a3d70156-1fdc-4c32-9752-d6af58795233","originalAuthorName":"王芳"},{"authorName":"徐明晗","id":"c819dc7f-32f0-49f6-9da1-a325548ce2e6","originalAuthorName":"徐明晗"},{"authorName":"杜大明","id":"4b71ceae-25a5-44ad-a51b-427355a06562","originalAuthorName":"杜大明"},{"authorName":"鞠银燕","id":"e278d046-434f-453e-8dd7-0cbc6226f4ac","originalAuthorName":"鞠银燕"},{"authorName":"李世斌","id":"2d20dca3-4ba7-417b-9c77-87646cf74f1c","originalAuthorName":"李世斌"},{"authorName":"纪岗昌","id":"0cc3d029-1033-48fc-baa2-8a9f8ad262d5","originalAuthorName":"纪岗昌"},{"authorName":"张联盟","id":"96ff8f5b-2b29-4623-9aa3-897a4f850ae3","originalAuthorName":"张联盟"}],"doi":"","fpage":"1453","id":"6c1fb94e-ec7e-4dc8-af15-59baa3d62e8c","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"abbfcb9f-3273-491e-8f81-3c073693950b","keyword":"二硼化锆","originalKeyword":"二硼化锆"},{"id":"3b63a93b-7910-4e4e-8f8d-a23753bc861b","keyword":"合成工艺","originalKeyword":"合成工艺"},{"id":"9b97fd58-30e6-4f97-9e3f-d22fb2fb5cc2","keyword":"共沉淀法","originalKeyword":"共沉淀法"}],"language":"zh","publisherId":"rgjtxb98201307041","title":"包裹型Al(OH)3-Y(OH)3/ZrB2复合粉体的合成工艺优化研究","volume":"42","year":"2013"},{"abstractinfo":"利用阴离子交换膜电解方法制备了La(OH)3.研究了电极材料、电流密度、反应介质对La(OH)3的影响.使用不锈钢材料作阴极,在电流密度低于300 A·m -2时,La(OH)3质量随电解时间线性增大.较佳工艺条件为:电流密度300 A·m -2,LaCl3浓度为0.2 mol·L -1,添加剂浓度为15%.循环伏安曲线表明,电解过程中不锈钢表面氧化膜和H+的还原均有一个电流阶跃,两个阶跃间有一个相对平缓的电流区域.相同电压时,无添加剂的0.2 mol·L -1 LaCl3溶液电流最大,含15%添加剂时的电流下降,0.6 mol·L -1 NaCl空白溶液的电流最小.La(OH)3的生成使析氢电位正移.","authors":[{"authorName":"魏琦峰","id":"22073a92-8d2d-428e-85f1-1bedc78294d1","originalAuthorName":"魏琦峰"},{"authorName":"任秀莲","id":"2b17d660-f904-478a-849f-0353fd0876b4","originalAuthorName":"任秀莲"},{"authorName":"杜杰","id":"205487ad-d6db-4edb-ada6-b2015e731fbb","originalAuthorName":"杜杰"},{"authorName":"张惠玲","id":"d5ef77b9-0f4e-450a-b8f8-981969009d76","originalAuthorName":"张惠玲"},{"authorName":"王超","id":"a26d84da-f7e7-4566-80fa-5f804e956560","originalAuthorName":"王超"}],"doi":"10.3969/j.issn.0258-7076.2007.03.011","fpage":"331","id":"bedde34e-c7da-46f4-a918-1776a24a1182","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e487b878-c0d6-4012-8eed-ef48a57e8eb4","keyword":"离子膜","originalKeyword":"离子膜"},{"id":"b04872b9-ace7-49f9-8868-c54f61e4c31c","keyword":"电解","originalKeyword":"电解"},{"id":"570f08db-949e-402b-a183-f38453a93048","keyword":"氢氧化镧","originalKeyword":"氢氧化镧"},{"id":"a514cbaf-8aa3-495e-b77f-4783e992429f","keyword":"循环伏安","originalKeyword":"循环伏安"}],"language":"zh","publisherId":"xyjs200703011","title":"离子膜电解法制备La(OH)3","volume":"31","year":"2007"}],"totalpage":6333,"totalrecord":63326}